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Abstract. In self-consistent mean-field approaches to odd-mass nuclei, the
time-reversal symmetry of the underlying one-body Hamiltonian is broken. This
induces a polarization of the even-even core to which the odd nucleon is added.
In addition pairing correlations in these nuclei are quenched for the nucleons
in odd number. To take this effect into account, a particle-number conserving
formalism is necessary (as opposed to Hartree–Fock–Bogolyubov or Hartree–
Fock–BCS calculations). In this context we use the Highly Truncated Diagonal-
ization Approach applied to describe pairing correlations and discuss the first
results of intrinsic magnetic moments in well-deformed odd-mass nuclei. Fi-
nally, in the framework of the Bohr and Mottelson unified model, the collective
contribution to the magnetic moment is calculated from the Hartree–Fock–BCS
solution of the underlying even-even core. We present preliminary results for
the total magnetic moment, which are found to be in fair agreement with exper-
imental data.

1 Introduction

In previous papers [1,2], we have studied the removal of the Kramers degeneracy
occuring in the single particle (s.p.) spectrum of a Skyrme-Hartree-Fock solution
describing an odd-mass nucleus, assuming axial symmetry. The breaking of
the time-reversal symmetry inherent to the proper microscopic description of a
system involving an odd number of fermions generates polarizing potentials in
the corresponding mean-field Hamiltonian. It has then been found, when the
odd-particle wave function possesses a small spin mixing, that the spin part of
the time-odd fields is dominating. The Kramers degeneracy is thus suppressed
in such a way that the energetically favored s.p. state is the one corresponding
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to a spin alignment with the spin field. It has further been shown [2, 3] that
the phenomenological quenching factor for the spin gyromagnetic factors gs

(around 30%) can be ascribed essentially to the spin polarization of the core.
This polarization is thus expected to have an effect on intrinsic magnetic dipole
moments.

In this context, the main goal of this paper is to investigate the effect of the
core polarization in the presence of pairing correlations, on the magnetic dipole
moment in well-deformed odd-mass nuclei. To implement these correlations
and account in a proper way for the blocking effect, we make use of the particle-
number conserving Highly Truncated Diagonalization Approach (HTDA) [4,5],
with a residual δ interaction. Since our study includes nuclei around 48Cr, we
consider proton-neutron pairing correlations in the T = 1 as well as T = 0
isospin channels. To calculate the magnetic dipole moment in the ground state
of well-deformed odd-mass nuclei, we rely on the Bohr and Mottelson unified
model picture and calculate the collective gyromagnetic ratio of the underlying
even-even core within the HFBCS approach. This contribution is outlined as
follows. In Section 2 we describe the theoretical framework of our calculations,
namely the treatment of odd-mass nuclei in the Skyrme–Hartree–Fock–BCS and
HTDA approaches and the microscopic calculation of the magnetic dipole mo-
ment. Then we present and discuss in Section 3 the calculated results of spin
quenching factors and magnetic moments, which we compare with available
experimental data. Finally we draw the main conclusions and give some per-
spectives in Section 4.

2 Theoretical Framework

2.1 Self-consistent mean-field solutions in odd-mass nuclei

Self-consistent mean-field ground-state solutions are obtained in the Skyrme–
Hartree–Fock–BCS framework, briefly recalled below with an emphasis on the
approximations made and the peculiarities stemming from the time-reversal sym-
metry breaking at the one-body level.

The nuclear Hamiltonian Ĥ considered is the sum of the intrinsic kinetic
energy K̂ and the nuclear interaction V̂ . As often done, we make the approx-
imation that neutrons and protons have equal masses and neglect the two-body
contribution to K̂ , so that the intrinsic kinetic energy becomes a one-body oper-

ator [6] written as K̂ ≈
A∑

i=1

(
1− 1

A

)
p̂2

i

2m . . The nuclear interaction V̂ is chosen to

be the Skyrme density-dependent two-body interaction defined by the sum of the
central V̂c, density-dependent V̂DD (to mock up three-body effects), spin-orbit
V̂s.o. and Coulomb V̂Coul contributions given, in coordinate representation, by

Vc(r1, r2) = t0(1 + x0Pσ) δ(r1 − r2) +
t1
2

(1 + x1Pσ)
[
δ(r1 − r2)k2

+ k† 2δ(r1 − r2)
]

+ t2(1 + x2Pσ)k† · δ(r1 − r2)k , (1)
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where Pσ = 1
2 (1+σ1 ·σ2) is the spin-exchange operator and k = i

2 (∇∇∇1−∇∇∇2),

VDD(r1, r2) =
t3
6

(1 + x3Pσ) ρα
(r1 + r2

2

)
δ(r1 − r2) , (2)

where ρ is the nucleon density, and

Vs.o.(r1, r2) = iW0 (σ1 + σ2) · k† × δ(r1 − r2)k . (3)

As well known, the expectation value E of the above Hamiltonian Ĥ calcu-
lated for a Slater determinant |Φ〉 is a time-even functional

E = 〈Φ|Ĥ |Φ〉 =
∫
dr
(
Hkin(r)+Hc(r)+HDD +Hs.o.(r)+HCoul(r)

)
(4)

of local densities, where Hkin(r), Hc(r), HDD, Hs.o.(r) and HCoul(r) are the
kinetic, central, density-dependent, spin-orbit and Coulomb energy-density con-
tributions. These local densities are classified in two categories according to
their behavior under time-reversal symmetry, represented by an antiunitary op-
erator T :

• time-even densities, which commute with T and are scalar or rank-2 ten-
sor quantities: nucleon density ρq(r), kinetic-energy density τq(r), spin-
current tensor Jμν

q (r);

• time-odd densities, which anticommute with T and are vector quantities:
spin density sq(r), current (or momentum) density jq(r), spin-kinetic-
energy density Tq(r).

The subscript q denotes the considered charge state, namely q = n for neu-
trons and q = p for protons. It is omitted when the sum of neutron and pro-
ton contributions is implied. The definition of the above listed densities can be
found, e.g., in Refs. [7–9]. Note that additional densities come into play when
the nuclear interaction includes tensor terms (see, e.g., Ref. [10]). The above
energy-density contributions have the following expressions in terms of the lo-
cal densities (whose r-dependence is omitted to alleviate the expressions)

Hkin(r) =
(
1− 1

A

) �2

2m
τ , (5)

Hc(r) = B1 ρ
2 +B10 s2 +B3(ρ τ − j2) +B14(s ·T−

←→
J 2)

+B5 ρΔρ+B16 s ·Δs +
∑

q

[
B2 ρ

2
q +B11 s2

q +B4(ρqτq − j2q)

+B15(sq ·Tq −
←→
Jq

2) +B6 ρq Δρq +B17 sq ·Δsq

]
, (6)
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with
←→
Jq

2 =
∑
μ,ν

(Jμν
q )2,

HDD(r) = ρα
[
B7 ρ

2 +B12 s2 +
∑

q

(
B8 ρ

2
q +B13 s2

q

)]
, (7)

Hs.o. = B9

[
ρ∇∇∇ · J + j · ∇∇∇× s +

∑
q

(
ρq∇∇∇ · Jq + jq · ∇∇∇× sq

)]
, (8)

where Jq is the antisymmetric part of the spin-current tensor Jμν
q [8], and

HCoul(r) ≈
1
2
ρp(r)VCD(r)− 3

4
e2
( 3
π

) 1
3
ρ

4
3

p (r) (9)

within the Slater approximation for the exchange terms [11, 12]. In Eqs. (5) to
(8), the coefficients Bi are functions of the Skyrme parameters ti, xi and W0 as
defined in Ref. [9].

The pairing correlations are then included in the many-body ground state
within the BCS framework. As explained in detail in Ref. [7], this amounts to
simply extend the definition of the local densities by incorporating the BCS oc-
cupation factors and to add the so-called pairing energy to the energy-density
functional given by Eq. (4). The resulting energy is then varied with respect
to the single-particle wave functions (in terms of which the local densities are
expressed), with a normalization constraint enforced by Lagrange multipliers
interpreted as single-particle energies ei, and with respect to the occupation fac-
tors. The former variation yields the Hartree–Fock equations ĥHF|φi〉 = ei|φi〉
with a Hartree–Fock one-body Hamiltonian ĥHF of the following form in coor-
dinate representation for the charge state q

h
(q)
HF(r) =−∇.

( �2

2m∗
q(r)

)
∇+ Uq(r) + δq pVCoul(r)

+
1
2i

(
Wμν

q (r)∇μσν +∇μσνW
μν
q (r)
)

+ Sq(r) · σ −
i

2

(
Aq(r) · ∇+∇ ·Aq(r)

)
−∇ ·
(
Cq(r) · σ

)
∇ .
(10)

In this expression, the time-even fields m∗(r), Uq(r), VCoul(r) and Wμν
q (r) de-

note the effective mass, the central-plus-density-dependent field, the Coulomb
field and the spin-orbit field respectively, whereas Sq(r), Aq(r) and Cq(r) are
time-odd fields. They are functions of the above local densities. In the following
we call Sq(r) the spin field and Cq(r) the spin-gradient field. For the discus-
sion which follows, we give only the expressions of the spin-orbit and time-odd
fields:

Wμν
q (r) = −B9 ε

κμν∇κ(ρ+ ρq) + 2
(
B14J

μν +B15J
μν
q

)
(11)

Sq(r) = 2
(
B10 +B12ρ

α)s + 2
(
B11 +B13ρ

α
)
sq +B9∇× (j + jq)

+ 2
(
B16 Δs +B17 Δsq

)
+B14 T +B15 Tq (12)
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Aq(r) = −2
(
B3 j +B4 jq

)
+B9∇× (s + sq) (13)

Cq(r) = B14 s +B15 sq . (14)

The expressions of the other time-even fields can be found, e.g., in Refs. [7, 9].
In this work we choose the SIII parametrization [13] of the Skyrme func-

tional for its fairly good bulk as well as spectroscopic properties [14, 15] across
the nuclide chart. In this parametrization, the coefficients B14 and B16 identi-
cally vanish. Therefore the quantities T(r),

←→
J 2 and Δs(r) do not need to be

computed neither in the central energy density Hc(r) nor in the spin-orbit, spin
and spin-gradient fields. In contrast, the coefficients B15 and B17 are non zero
and the corresponding quantities Tq(r),

←→
Jq

2 and Δsq(r) should be calculated in
Hc(r), Wμν

q (r), Sq(r) and Cq(r). However for simplicity we neglect as in, e.g.,
Ref. [9], these densities, which suppresses the spin-gradient field contribution in
the Hartree–Fock Hamiltonian and reduces the role of the spin-current tensor to
the one of its antisymmetric part only.

We close this subsection with a discussion of two peculiar aspects of the
above approach in odd-mass nuclei.

When neutrons or protons are in odd number, the appearance of time-odd
fields in the Hartree–Fock Hamiltonian (10) removes the Kramers degeneracy
in the single-particle spectrum. In the BCS and HTDA treatments of pairing
correlations, this poses the problem of properly defining the notion of pairs. In
this work we define the conjugate state |̃i〉 of a given neutron or proton single-
particle state |i〉 as the one that has the same charge state and the largest overlap
in absolute value with the time-reversed state |i〉 = T |i〉. In practice, it turns out
that this overlap is equal to 1 within 1% or less for all cases encountered. One
can similarly define a neutron-proton pair without ambiguity.

Moreover, we study here well-deformed nuclei (in order for their mean-field
description to be relevant) with axial and left-right symmetric shapes in their
ground state. Therefore the single-particle states |i〉 have a definite projection
Ωi of the angular momentum on the symmetry axis and a definite parity πi. In
these rigidly deformed nuclei the unified model picture [16] for the ground state
applies and allows one to equate the total angular momentum I and parity πtot

in the ground state with the third angular-momentum projection K and parity
π of the odd nucleon, namely I = K and πtot = π in the absence of Coriolis
coupling effects. When solving the Hartree–Fock–BCS equations, we start from
a converged solution for the underlying even-even core (assuming axial and left-
right symmetries) and implement the self-consistent blocking procedure. More
precisely, the single-particle state which has the desired quantum numbers K
and π and the lowest energy above the underlying even-even core is imposed to
have an occupation factor equal to 1 and does not participate in pair excitations.
The BCS equations are thus solved for the remaining single-particle spectrum.
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2.2 Highly Truncated Diagonalization Approach

The Highly Truncated Diagonalization Approach (HTDA) can be viewed as a
highly truncated shell model based on a mean-field solution [4, 17].

We begin with the Hamiltonian Ĥ written as the sum of the intrinsic kinetic
energy K̂ and the nuclear-plus-Coulomb interaction V̂ . Then we consider an
attractive one-body potential Û , obtained in this work by a Skyrme–Hartree–
Fock–BCS calculation as presented in the previous subsection, and the associ-
ated one-body Hamiltonian Ĥ0 defined by Ĥ0 = K̂ + Û , whose single-particle
eigenstates |i〉, corresponding to the eigenvalues ei, form an orthonormal basis
of the one-body space (including position, spin and isospin degrees of freedom).
The lowest eigenstate of Ĥ0 is a quasi-particle vacuum of particle-hole type, in
other words a Slater determinant, denoted by |Φ0〉. In the following this state is
called merely quasi-vacuum and serves as a reference state in the definition of
all normal products. We can express the Hamiltonian Ĥ as the sum of a one-
body Hamiltonian, which we refer to as the independent quasiparticle Hamilto-
nian Ĥiqp, a residual-interaction operator V̂res and the expectation value of Ĥ
in |Φ0〉. The independent quasiparticle Hamiltonian Ĥiqp is the normal-product
form of Ĥ0

Ĥiqp = : Ĥ0 : = Ĥ0 − 〈Φ0|Ĥ0|Φ0〉 . (15)

In the single-particle basis {|i〉} associated with Ĥ0, the operator Ĥiqp takes the
second-quantization form Ĥiqp =

∑
i

ei : a†i âi : , where the operator a†i creates a

nucleon in a state |i〉 whose isospin is implicitly specified in the label i, whereas
ai annihilates a nucleon in the state |i〉. The residual interaction V̂res is defined
by

V̂res = : V̂ : + : V − Û : , (16)

where V denotes the one-body reduction of V̂ for |Φ0〉 and V̂ = : V̂ : + : V :
+〈Φ0|V |Φ0〉 according to the Wick theorem applied to the two-body operator
V̂ , so that : V̂ : = V̂ − V + 〈Φ0|V |Φ0〉. Because the potential Û comes from
a Hartree–Fock–BCS calculation, it is expected to slightly differ from V when
the solution to the BCS equations corresponds to non-vanishing pairing gaps.
In the HTDA framework we neglect the contribution : V − Û : to the residual
interaction V̂res.

A proper account of pairing correlations beyond |Φ0〉 requires one to use
in V̂res a nucleon-nucleon interaction having satisfactory particle-particle ma-
trix elements. Very few Skyrme parametrizations provide a good description of
mean-field and pairing properties simultaneously. Those which do (such as, e.g.,
the SkP parametrization [18]) are unfortunately not fitted to reproduce pairing
properties in N = Z nuclei. Therefore we resort to replacing the nuclear in-
teraction in V̂res by a contact interaction in the form of a density-independent δ
interaction V̂δ. Moreover we neglect the Coulomb contribution to the residual
interaction, hence V̂res ≈: V̂δ :. Because of the space-symmetric character of the
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δ interaction, V̂δ can be decomposed as V̂δ =
1∑

T=0

V
(T )
0 δ(r1−r2) Π̂S Π̂T , where

Π̂S (Π̂T ) is the spin (isospin) projection operator in the two-body subspace of
the Fock space and S = 1− T (see, e.g., Ref. [19]).

In practical HTDA applications, the many-body basis in which the Hamil-
tonian is diagonalized has to be truncated. Here we consider a model space
including single-pair (SP) and double-pair (DP) excitations – with respect to
the quasi-vacuum |Φ0〉–whose particle-hole excitation energy does not exceed
a given cutoff energy Ecut = 3 �ω(A) with the empirical inter-shell energy
�ω(A) = 41A−1/3 (in MeV). Since the correlations considered in this work are
of pairing type in both T = 1 and T = 0 channels, all combinations of nn, np
and pp pairs in the excited configurations are taken into account.

2.3 Magnetic dipole moment

In the unified model of Bohr and Mottelson [16], the magnetic dipole moment
μ of the axially-symmetric ground state of an odd-mass nucleus is the sum of
an intrinsic contribution μintr and a contribution from the collective degrees of
freedom μcoll. The former is proportional to the projection μ̂z of the magnetic
dipole moment operator on the symmetry axis (chosen to be z) according to
μintr = K

K+1 〈Ψ|μ̂z |Ψ〉, where |Ψ〉 is the normalized nuclear state with good K

quantum number. The one-body operator μ̂z is defined by μ̂z = g��̂z + gsŝz ,
where �̂z and ŝz are the corresponding projections of the single-particle orbital
and spin angular-momentum operators.

Upon writing 〈Ψ|μ̂z|Ψ〉 in the same form as in the single-particle model
(without core polarization), one can define an effective spin gyromagnetic ratio
g
(eff)
s by the relation 〈Ψ|μ̂z |Ψ〉 = g

(q)
� 〈�̂z〉odd + g

(eff)
s 〈ŝz〉odd, where q is the

charge state of the odd nucleon (the other charge state will be noted q) and
〈�̂z〉odd (resp. 〈ŝz〉odd) is the expectation value of �̂z (resp. ŝz) for the odd

nucleon. The ratio g(eff)
s /g

(q)
s is called the spin quenching factor.

The collective contribution μcoll is proportional to the collective gyromag-
netic ratio gR according to μcoll = K

K+1 gR. In this work we calculate gR micro-
scopically in the cranking model with BCS pairing correlations as in Ref. [20]

gR =

∑
k,�

〈�|μ̂−|k〉〈k|ĵ+|�〉 (ukv� − u�vk)2/(Ek + E�)∑
k,�

〈�|ĵ−|k〉〈k|ĵ+|�〉 (ukv� − u�vk)2
, (17)

where the sums run over all Hartree–Fock–BCS single-particle states, ĵ+ =
ĵx + i ĵy is the usual raising angular-momentum operator, ĵ− = ĵ†+ (similar
expressions hold for μ̂±), Ek is the quasi-particle energy of the single-particle
state |k〉 and uk (resp. vk) is the BCS vacancy (resp. occupation) factor of the
single-particle state |k〉.
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3 Results and Discussion

We have performed Skyrme–Hartree–Fock–BCS calculations in twelve well-
deformed odd-mass nuclei from the A ∼ 50 region to the actinide region, upon
blocking the lowest Kπ state above the underlying even-even core. The Skyrme
functional has been chosen in its SIII parametrization and the seniority force of
Ref. [15] has been used to solve the BCS equations. To solve the Hartree–Fock
equations we have expanded the single-particle wave functions onto a cylindri-
cal hamonic-oscillator basis with basis parameters optimized for the Skyrme–
Hartree–Fock–BCS solution of the underlying even-even core.

For each ground-state solution we have calculated the intrinsic magnetic
dipole moment and deduced the gs quenching factor as defined in the previous
section. Overall we have found the same geff

s -values as for the pure Hartree–
Fock solutions of Ref. [2]. The nn and pp pairing correlations have thus no
impact on the intrinsic magnetic moment, at least in the BCS framework.

To check this conclusion against a particle-number conserving approach to
pairing correlations, we have performed HTDA calculations for these nuclei. As
it turns out the difference with the Hartree–Fock results for the gs quenching
factor are of the order of only 10−3 for all nuclei except those with N ≈ Z .
Selected results obtained with V

(T=1)
0 = −250 MeV · fm3 are presented in

Table 1.
For 49Cr the HTDA results on the second line are obtained with V (T=0)

0 =
V

(T=1)
0 , and the results on the third line are obtained by setting to 0 the matrix

elements between Tz = 0 two-body states. These results show that the np
pairing correlations only have an effect on the intrinsic magnetic moment. This
is consistent with the fact that the T = 0 residual interaction plays a role in the
intrinsic magnetic moment as already observed in Ref. [3].

To better understand the np pairing mechanism at work in μintr, we con-
sider the following two-level model for 49Cr. Let us assume that the Kramers

Table 1. Quenching factor of gs calculated within the HTDA framework, together with
the main components of the corresponding ground-state solution.

Nucleus Kπ 〈ŝz〉odd

Quenching factor
isospin
channel

Weight in wave function [%]

HF HTDA
1 pair

2 pairs
qq qq np

49Cr 5/2− 0.426 0.77
0.56 T = 1 3.2 11.0 8.2 1.3
0.60 T = 1, 0 3.0 16.6 10.2 2.5
0.77 Tz = ±1 3.9 15.3 0.0 1.0

177Lu 7/2+ −0.480 0.78 0.78

T = 1

3.8 31.6 0.0 3.6
177Hf 7/2− −0.415 0.71 0.71 13.4 11.6 0.1 2.2
179Hf 9/2+ 0.438 0.73 0.73 7.1 13.1 0.0 1.4
179Ta 9/2− 0.478 0.82 0.82 5.0 25.4 0.1 3.0
235U 7/2− 0.364 0.72 0.72 7.3 24.9 0.0 3.7
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degeneracy and isospin symmetry are realized with a very good approxima-
tion for the last occupied |n〉 (resp. |p〉) and first unoccupied |ν〉 (resp. |π〉)
single-particle levels in 48Cr for neutrons (resp. protons). Then we describe the
unperturbed ground-state of 49Cr by the Slater determinant |Φ0〉 = a†ν |48Cr〉,
where |48Cr〉 denotes the lowest-energy Slater determinant representing the un-
perturbed ground-state of 48Cr. The HTDA many-body basis for 49Cr, limited
to single-pair excitations, is thus made of the four Slater determinants: |Φ0〉,
|Φpp〉 = a†πa

†
πapap|Φ0〉 (one-pp-pair excitation), |Φnp〉 = a†νa

†
πapan|Φ0〉 and

|Φ′
np〉 = a†νa

†
πapan|Φ0〉 (one-np-pair excitations). The HTDA solution has thus

the form |Ψ〉 = χ0|Φ0〉+χpp|Φpp〉+χnp|Φnp〉+χ′
np|Φ′

np〉, where the χ coeffi-
cients are determined by diagonalization of the HTDA hamiltonian in the above
basis.

The contribution from pairing correlations to the expectation value of μ̂z for
the HTDA solution, defined by 〈μ̂z〉corr = 〈μ̂z〉HTDA − 〈μ̂z〉HF, reads

〈μ̂z〉corr =
(
χ′ 2

np + χ2
np

)[
K +
(
g(p)

s − 1
)
〈π|ŝz|π〉 − g(n)

s 〈ν|ŝz |ν〉
]

+
(
χ′ 2

np − χ2
np

)[
Khole +

(
g(p)

s − 1
)
〈p|ŝz|p〉 − g(n)

s 〈n|ŝz|n〉
]
, (18)

where K denotes the angular-momentum projection for the blocked state |ν〉
(as well as for the analog proton state |π〉) and Khole is the angular-momentum
projection for the hole levels |n〉 and |p〉. This shows that in the absence of np
pairing correlations the HTDA value of μintr does not differ from the Hartree–
Fock value. If both kinds of np-pair excitations are equally populated, which
is approximately the case when the T = 0 channel of the residual interaction
is negligible with respect to the T = 1 channel, and if one neglects the charge
symmetry breaking, the correlation contribution to 〈μ̂z〉 becomes:

〈μ̂z〉corr ≈
(
χ′ 2

np + χ2
np

)[
K +
(
g(p)

s − g(n)
s − 1

)
〈ŝz〉odd

]
, (19)

with g
(p)
s − g

(n)
s − 1 ≈ 8.412. This expression explains the large pairing-

correlation contribution to 〈μ̂z〉 when 〈ŝz〉odd > 0, hence the large differences

Table 2. Comparison of the total magnetic moment μ with its experimental values from
Ref. [21] when available.

Nucleus
`
Jπ

´
exp

`
Kπ

´
th

gR

µ = µcoll + µintr

Exp.
HF HTDA

isospin
channel

49Cr 5/2− 5/2− 0.535 −0.51
−0.28 T = 1 ±0.476(3)−0.32 T = 1, 0

179Hf 9/2+ 9/2+ 0.378 −0.65

T = 1

−0.6409(13)
179Ta 7/2+ 9/2− 0.378 5.37
235U 7/2− 7/2− 0.235 −0.59 −0.38(3)
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obtained in HTDA and Hartree–Fock gs quenching factors for 49Cr as seen in
Table 1. In the presence of T = 0 pairing, the second term in Eq. (18) comes
into play but numerical calculations show that the above explanation still holds.

Finally we have calculated the collective gyromagnetic ratio and compared
the total magnetic moment with the experimental value when available. As can
be seen from Table 2, the agreement is fairly good.

4 Conclusion

We have studied the effect of core polarization on single-particle states particu-
larly on intrinsic magnetic moments of odd-mass nuclei in the presence of T = 0
and T = 1 pairing correlations. Overall we have obtained a quenching of the
spin contribution to intrinsic magnetic moments of about 0.78, which is close to
the empirical value.

Moreover we have found that, away from the N = Z line, the pairing cor-
relations have a negligible effect on magnetic moments, whereas they play a
major role in N ∼ Z odd-mass nuclei. We have traced back this effect to the
np pairing correlations which are active only close to the N = Z line, in both
T = 0 and T = 1 isospin channels, whereas the nn and pp pairing correlations
are spectators.

Finally, when including the collective contribution to magnetic moments,
we obtain a fairly good agreement with experimental data for well-deformed
odd mass nuclei in mass regions A ∼ 50, rare-earth nuclei around A = 178 and
actinide nuclei (aroundA = 236).
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