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Abstract. An extended pairing-plus-quadrupole model for two oscillator shells,
realized in the framework of the Elliott SU(3) scheme, is used to study the com-
bined effects of the quadrupole-quadrupole, pairing, and single-particle inter-
actions on energy spectra and lowest-J state shapes of nuclear systems. The
pairing part of the Hamiltonian consists of pp-, nn- and pn-pairing terms and
terms describing the pair-scattering between two oscillator shells. Results for
systems of different mass are calculated in the ds 4+ fp shells for a reasonable
choice of values for the interaction parameter strengths.

1 Introduction

Intruder levels of opposite parity from the upper shell are key ingredient for
the building of a complete shell-model theory. Indeed, their inclusion in the
model space gives the opportunity for interpretation of many interesting features
in nuclei. Specifically, the size of the model space under consideration allows
the description of experimentally observed high-spin and high-energy states and
the abundance of 0% states in a certain energy interval while the addition of
opposite-parity levels is key for the simultaneous description of both positive-
parity and negative-parity states. The intruder levels are present in heavy de-
formed nuclei where the strong spin-orbit interaction destroys the underlying
harmonic oscillator symmetry of the nuclear mean-field potential. The role they
play for the overall dynamics of the system has been the topic of many dis-
cussions [1-4]. Until now, the problem has been either approached within the
framework of a truncation-free toy model [1] or by just considering the role of
the single intruder level detached from its like-parity partners [2,4]. It was ar-
gued in [1] that particles in these levels contribute in a complementary way to
building the collectivity in nuclei. However, some mean-field theories suggest
that these particles play the dominant role in inducing deformation [3].

The purpose of the present work is to improve the predictive power of the ex-
tended SU(3) realization of the pairing-plus-quadrupole model in two oscillator
shells introduced in [5] by adding the single-particle terms in the Hamiltonian
of the system. This approach for the first time explicitly included particles from
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the complete unique-parity sector. After a short introduction for the basics of
the model - basis states and Hamiltonian used - we present some results for the
ground-state and/or lowest-J state properties of identical-particle nuclear sys-
tems in the full ds + fp shell model space. We conclude with the outcome for
the proton-neutron system of 2 protons and 2 neutrons which in the ds+ fp shell
is the prototype of the nucleus 2°Ne.

2 Pairing-Plus-Quadrupole Model in Two Oscillator Shells

The pairing-plus-quadrupole model, first introduced by Bohr and Mottelson and
Pines [6], and Belyaev [7], has been widely used to reproduce both few-particle
non-collective and many-particle collective features of nuclei [8—10]. First of
all, the model incorporates the features most important in nuclear mean-field
theories: the interaction between particles can be summed up, in a first approxi-
mation, to an average spherical single-particle potential; and long range particle-
hole correlations and short-range particle-particle correlations can be taken into
account by a deformation of the field and a pairing potential, respectively [11].
The model has never been applied for full-space calculations in more than one
of the low-lying oscillator shells or for restricted number of particles in higher-
lying shells.

The SU(3) realization of the model was initially introduced in one [12, 13]
and two spaces [14](for proton-neutron systems) and later extended to four spaces
[5] giving an opportunity to explore proton-neutron systems in model spaces in-
cluding more than one shell. In this contribution we use this novel concept where
the SU(3) basis states are of the type

Hin;ivtp(A )KL, {Sr, Sy, }S; TMy) . 1

They are built as SU(3) proton (7) and neutron (v) strongly-coupled configura-
tions with well-defined particle number and good total angular momentum J. In
(1) the quantum numbers indicated by i, = {i,N, iot }po (Ao, Lo ), Where the
tor = Nor[for]@or(Aor, hor) are the basis-state labels for the four spaces in
the model (o stands for 7 or v, and 7 stands for normal (N) or unique (U) parity
levels). First, the particles from the normal and the unique spaces are coupled
for both protons and neutrons. Then, the resulting proton and neutron irreps are
coupled to a total final set of irreps. The total angular momentum J results from
the coupling of the total orbital angular momentum L with the total spin S. The
p and k are, respectively, the multiplicity indices for the different occurrences of
A, ) in {(Ary ) X (A i)} and Lin (A, ).

The SU(3) classification of many-body states has the advantage of allowing
for a geometrical analysis of the eigenstates of a nuclear system via the relations
between the microscopic parameters (\, 1) and the parameters (3, ) of the col-
lective model [15] and hence it gives an insight into phenomena associated with
nuclear deformation. The parameter  is a measure of the degree of axial de-
formation while the triaxiality parameter v takes the values of 0 degrees for a
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prolate shape of the nucleus, 60 degrees for an oblate shape and 30 degrees in
case of maximal triaxiality. The parameters (3 and y are given by the following
expressions [16]:

kB = %\/ Cy+3
IR s
v = =cos (72 )

RN (P

Here the constant k& = 4/ Q%A < r2 >, where A is the total number of nucleons,

< r2 > - the nuclear mean square radius of the system, and Cy = A\? + p? +
3(A+p)+Apand C3 = (A—p)(A+2p+43)(2A4p1+4-3) are the Casimir operators
of second and third order, respectively. These relations can only be used for a
state with good SU(3) symmetry. When this is not the case, one should calculate
the expectation values of these expressions instead.

In this paper we use a Hamiltonian more general than the ones used in the
earlier one-shell SU(3) realizations of the pairing-plus-quadrupole model for
identical particle [12, 13] and proton-neutron [14] systems. We consider addi-
tionally identical-particle pair-scattering terms (7 # 7’), proton-neutron terms
(wv) and isoscalar terms which is obviously a more sophisticated form of the
well-known pairing-plus-quadrupole model. The Hamiltonian has the form

)

H=H"" = 2Q.Q = G{Y (ST (s7)7:""

o, T

D D o el b Forit b W S (A KW C g KLY S )

o, T#T! JT 1,7/

where, for simplicity, all pairing terms are taken with the same strength. The
standard pair-creation and annihilation operators are given by

1 .
HJT _ L N\ —myip T T JT
(S )O'T - 9 Z ( ) [(a(n,O)l%jmJ)UT X (a(n,O)l%jfm])UT] (4)
nljm;
and
(5777 = (ST 5)
with azn )L jm,; and a(, oy 1jm, being the creation and annihilation operators,
’ 2 3J ’ 7

respectively. In equation (3), L = 0 identical-particle pairing and pair-scattering
are given by the first and the second term, respectively. The third term in the
braces describes the isovector ((J7') = (01)) and the isoscalar ((J1') = (10))
proton-neutron pairing and pair-scattering. The single-particle part of the Hamil-

tonian is
HoP = "¢, (6)
J
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Figure 1. The single-particle states for case 1 (a) and case 2 (b).

L 1 .
where 7; = Emj 0y Ljm,; A(n0)ijm; 18 the number operator and the sum goes
over the single-particle levels of energy ¢; for both oscillator shells involved in
the construction of the total model space (see below).

3 Results

Calculations are performed in a model space composed of two - ds and fp -
shells which we call the ds 4+ fp shell, where no restrictions on the basis have
been imposed and two distinct cases have been explored (see Figure 1). Case
1 represents the situation when the energy of the f7/5 level is close to the one
of the levels from the ds shell, so it is considered to be an intruder level which
penetrates the lower-lying ds-shell levels of opposite parity. In case 2 the single-
particle energy of the f7 /5 level is similar to that of its like parity partners from
the fp shell and is not an intruder level. Hence, the two cases correspond to two
different deformations in the Nilsson basis.

Our main goal is to explore the behavior of the systems implied by the use
of diferent values for the parameters hw, G and . The values for hiw are chosen
to include the one, typical for the ds shell nuclei of about 15 MeV. Specifically,
this parameter varies in steps between zero and 20 MeV. For simplicity, pairing
strengths are taken equal for identical-particle pairing and the proton-neutron
terms and are 0.05 MeV(mild value) and 0.2 MeV(a reasonable value, which
is somewhat reduced from the one of 0.45 MeV used in one-shell calculations
because of the new pairing terms included in the Hamiltonian). Finally, we vary
the values of the parameter y in small steps between 0 and 0.3 MeV.

3.1 System of 2, 3 and 4 particles in the ds + fp shells

These systems can be considered as the prototypes for the following three pairs
of mirror nuclei: '*0 and '®Ne, 'O and '”Na, and 2°0 and 2°Mg. The even-
even nuclei from the list above have a ground state with J = 0T. In the case of

Y0O(19Na) we calculated the lowest-J state with characteristics J = %Jr.
First, results for the wave-function contents in the ground state of the sys-
tem of 4 particles are shown for the case 1 (Figure 2) and case 2 (Figure 3),

respectively. The sum contribution of configurations with the three possible dis-
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Figure 2. Wave-function contents of the ground state for the system of 4 particles using
various sets of parameters G and /w as a function of the quadrupole parameter with the
single-particle energies according to case 1.

tributions of nucleons between the ds and fp shells — [4,0], [2,2] and [0,4] —
is displayed. The symbol [N, U] stands for the type of configurations where
N is the number of particles in the ds shell and U - the one in the fp shell.
Qualitatively, the situation in the two cases is very distinct. In case 1, all three
types of configurations compete for lower x values — up to x = 0.04 MeV for
G = 0.05MeV and x = 0.1 MeV for G = 0.2 MeV independently of the value
of fw. The dominant configurations for any reasonable value of the parameters
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Figure 3. Wave-function contents of the ground state for the system of 4 particles using
various sets of parameters G and hw as a function of the quadrupole parameter with the
single-particle energies according to case 2.
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hw, G and x are of the type [2,2] where two particles are in the ds shell and 2
—in the fp shell. With the rise of the values of x parameter and the fall of G
parameter, only configurations of this type are present. In case 2, the type of
configuration [0,4] is not present for any values of x parameter. There is a point,
at which the type of dominant configurations changes from [4,0] to [2,2] with
the rise of y. For a choice of bigger interval between the two oscillator shells
(higher Aw values) this point moves to larger x values. The role of the pair-
ing interaction (higher G values) is to soften the transition which occurs over a
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Figure 4. Expectation value of the shape parameter (3 for the lowest-.J state of the systems
of 2 (J = 0%, black), 3(J = %Jr, red) and 4(J = 07, blue) particles using various sets
of parameters G and fiw with the single-particle energies according to case 1.
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Figure 5. Expectation value of the shape parameter /3 for the lowest-.J state of the systems
of 2 (J = 07, black), 3(J = %Jr, red) and 4(J = 0™, blue) particles using various sets
of parameters G and hw with the single-particle energies according to case 2.
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broader interval of x values.

Next, we use Eq.(2) and the eigenfunction expansion over the basis states to
calculate the expectation values < 8 > and <  >. Figures 4 and 5 show the
results for the expectation values of the deformation parameter 3 in the lowest-.J
states for the systems of 2, 3 and 4 particles. In case 1, the value of 5 goes up
with the rise of y, while the behavior looks very similar for all the chosen values
of hw and G. In case 2, there is a rapid jump in the value which happens at the
same Y value, where the change in the character of the dominant configurations
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Figure 6. Expectation value of the shape parameter ~y for the lowest-.J state of the systems

of 2 (J = 0%, black), 3(J = %Jr, red) and 4(J = 07, blue) particles using various sets

of parameters G and fiw with the single-particle energies according to case 1.
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Figure 7. Expectation value of the shape parameter -y for the lowest-J state of the systems
of 2 (J = 07, black), 3(J = %Jr, red) and 4(J = 0™, blue) particles using various sets
of parameters G and hw with the single-particle energies according to case 2.
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occurs (see Figure 3). Heavier systems are normally characterized by larger
values of the [ parameter which is indeed the case for higher values of the y
parameter. The situation for the expectation value of the parameter -y is similar,
so we only point out the differences. This parameter has a smaller value for
heavier systems. The case of x = 0 gives an almost perfect triaxial shape for
the case of 3 particles which is the result of a single irrep with A = u. For lower
hw values the transition to a less triaxial shape occurs more rapidly in case 1 for
small-x values.
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Figure 8. Expectation value of the shape parameter /3 for the ground state of a system
of 2p+2n using the total Hamiltonian (solid line) and without the use of the scattering
pairing terms (dashed line). In this calculation the single-particle energies are chosen
according to case 1 (a) and case 2 (b) with ~Aw = 0 MeV (black), 5 MeV (red), 10 MeV
(blue), 15 MeV (cyan), and 20 MeV (magenta).
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Figure 9. Expectation value of the shape parameter «y for the ground state of a system
of 2p+2n using the total Hamiltonian (solid line) and without the use of the scattering
pairing terms (dashed line). In this calculation the single-particle energies are chosen
according to case 1 (a) and case 2 (b) with iw = 0 MeV (black), 5 MeV (red), 10 MeV
(blue), 15 MeV (cyan), and 20 MeV (magenta).

3.2 The system 2p + 2n in the ds + fp shells

Finally, we present results from calculations performed for a N=Z nuclear sys-
tem of two protons and two neutrons which we have not labeled as °Ne, since
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no comparison with experimental data has been shown. Compared to Figures 4
and 5, Figure 8 illustrates a slightly higher saturation value for the deformation
parameter /3 with respect to the result for four particles. An analogous compari-
son of Figure 9 with Figures 6 and 7 shows slightly lower saturation value for the
triaxiality parameter . This change is due to the consideration of proton neu-
tron interactions in two shells. For both (5 and + the role of the pair-scattering
terms in the Hamiltonian is also shown. Namely, the lack of these terms (result
given by the dashed lines in both Figures 8 and 9) implies a rapid rise in both
[ and . This (as well the sharp jump obtained in the case 1 for ~, illustrated
in Figure 6 (a)) is a result of the transition in the eigenstate contents from the
leading representation of the dominant type of configuration to a mixture of rep-
resentations of the other type. This effect is not observed in case of transition
from the dominance of a single irrep of one type to a single one of another type
as is the situation for case 2 in Figures 8 (b) and 9 (b). The addition of all the
pair-scattering terms (solid line) leads to softening of the rapid jump in the value
for a certain strength . This effect is more prominent than the sum effect of the
proton-neutron pairing and pair-scattering terms.

4 Conclusion

In this work, calculations for the systems of 2, 3 and 4 particles and the system
of 2 protons and 2 neutrons were performed in a free of truncation model space
built over the combination of two oscillator shells. The effects of the quadrupole,
pairing and single-particle terms of the Hamiltonian were studied for the two ex-
treme cases for the position of the f7/ single-particle level. The results indicate
that while the pairing interaction mostly softens the effects, the strength of the
single-particle energies drives the main (rapid) changes in the behavior of the
systems.
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