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Abstract. The symmetry energy, the neutron pressure and the asymmetric
compressibility of deformed neutron-rich even-even nuclei are calculated on the
examples of Kr and Sm isotopes within the coherent density fluctuation model
using the symmetry energy as a function of density within the Brueckner energy-
density functional. The correlation between the thickness of the neutron skin
and the characteristics related with the density dependence of the nuclear sym-
metry energy is investigated for isotopic chains of these nuclei in the framework
of the self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an
extended chain of Pb isotopes are also presented. A remarkable difference is
found in the trend followed by the different isotopic chains: the studied corre-
lations reveal a smoother behavior in the Pb case than in the other cases. We
also notice that the neutron skin thickness obtained for 208Pb with SLy4 force
is found to be in a good agreement with recent data. In addition to the interest
that this study may have by itself, we give some numerical arguments in proof
of the existence of kinks in Ni and Sn isotopic chains that are not present in the
Pb chain.

1 Introduction

The ground states of atomic nuclei are characterized by different equilibrium
configurations related to corresponding geometrical shapes. The study of the
latter, as well as the transition regions between them, has been a subject of a
large number of theoretical and experimental studies (for a review, see, for ex-
ample, Ref. [1] and references therein). The position of the neutron drip line is
closely related to the neutron excess and the deformation in nuclei. Deformed
nuclei are expected in several regions near the neutron drip line [2, 3]. In some
cases, the deformation energy can impact their existence. For instance, it has
been predicted that there exist particle-bound even-even nuclei that have, at the
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same time, negative two-neutron separation energies caused by shape coexis-
tence effects [2]. In fact, the nuclear deformation increases the surface area,
thus leading to a larger surface symmetry energy in a neutron-rich nucleus with
a deformed shape. Conversely, the precise determination of the surface symme-
try energy is important to describe the deformability of neutron-rich systems and
also to validate theoretical extrapolations.

Nowadays, the experimental information about the symmetry energy is fairly
limited. The need to have information for this quantity in finite nuclei, even the-
oretically obtained, is a major issue because it allows one to constrain the bulk
and surface properties of the nuclear energy-density functionals (EDFs) quite
effectively. In our recent work [4] the Brueckner EDF for asymmetric nuclear
matter (ANM) [5,6] was applied to calculate nuclear quantities of medium-heavy
and heavy Ni, Sn, and Pb nuclei that include surface effects, namely the nuclear
symmetry energy s, the neutron pressure p0, and the asymmetric compressibil-
ity ΔK . For this purpose, a theoretical approach that combines the deformed
HF+BCS method with Skyrme-type density-dependent effective interactions [7]
and the coherent density fluctuation model (CDFM) (suggested and developed
in Refs. [8, 9]) was used. We would like to note the capability of the CDFM
to be applied as an alternative way to make a transition from the properties of
nuclear matter to the properties of finite nuclei. We have found that there ex-
ists an approximate linear correlation between the neutron skin thickness ΔR
of even-even nuclei from the Ni (A = 74 − 84), Sn (A = 124 − 152), and Pb
(A = 206−214) isotopic chains and their nuclear symmetry energies. A similar
linear correlation between ΔR and p0 was also found to exist, while the relation
between ΔR and ΔK turned out to be less pronounced. The kinks displayed
by Ni and Sn isotopes and the lack of such kink in the Pb chain considered [4]
were shown to be mainly due to the shell structure of these exotic nuclei but they
deserve further analysis within the used theoretical approach.

Another interesting question is to explore how the nuclear symmetry energy
changes in the presence of deformation and correlates with the neutron skin
thickness within a given isotopic chain. In the present work (see also [10]),
an investigation of possible relation between the neutron skin thickness and the
same basic nuclear matter properties in deformed finite nuclei is carried out for
chains of deformed neutron-rich even-even Kr (A = 82−96) (including, as well,
the case of some extreme neutron-rich nuclei up to 120Kr) and Sm (A = 140−
156) isotopes, following the theoretical method of Ref. [4]. We also present
for comparison results for an extended chain of Pb (A = 202 − 214) isotopes.
This is motivated by the significant interest (in both experiment [11–13] and
theory [14–17]) to study the neutron distribution and rms radius in 208Pb, aiming
at precise determinations of the neutron skin in this nucleus. In addition to the
interest that this study may have by itself as well as in combination with the
previous calculations of Ref. [4], we give some numerical arguments in proof of
the existence of kinks in Ni and Sn isotopic chains that are not present in the Pb
chain.

126



Nuclear Matter Properties of Deformed Neutron-Rich Exotic Nuclei

2 Theoretical Framework

The quantity sANM (ρ), which refers to the infinite system and therefore ne-
glects surface effects, is related to the second derivative of the energy per parti-
cle E(ρ, δ) using its Taylor series expansion in terms of the isospin asymmetry
δ = (ρn − ρp)/ρ, where ρ, ρn and ρp being the baryon, neutron and proton
densities, respectively, (see, e.g., [10, 18, 19]):

sANM (ρ) =
1
2
∂2E(ρ, δ)
∂δ2

∣∣∣∣
δ=0

= a4 +
pANM
0

ρ2
0

(ρ− ρ0) +
ΔKANM

18ρ2
0

(ρ− ρ0)2+ · · · . (1)

In Eq. (1) the parameter a4 is the symmetry energy at equilibrium (ρ = ρ0). In
ANM the pressure pANM

0 and the curvature ΔKANM are:

pANM
0 = ρ2

0

∂sANM (ρ)
∂ρ

∣∣∣∣
ρ=ρ0

, (2)

ΔKANM = 9ρ2
0

∂2sANM (ρ)
∂ρ2

∣∣∣∣
ρ=ρ0

. (3)

In general, the predictions for the symmetry energy vary quite substantially:
e.g., a4 ≡ s(ρ0) = 28 − 38 MeV while an empirical value of a4 ≈ 29 MeV
has been extracted from finite nuclei by fitting the ground-state energies using
the generalized Weizsäcker mass formula (see, e.g., Ref. [20]). By using the
experimental pygmy strength, an average value of a4 = 32.0 ± 1.8 MeV was
obtained from the 130,132Sn analysis [21], that is within the acceptable range
of values of a4 to be around 32.5 MeV coming from various experiments using
different experimental probes (for a recent status, see, for example, Ref. [22] and
references therein).

In Refs. [4, 10] we calculated the symmetry energy, the pressure and the
curvature for finite nuclei applying the coherent density fluctuation model. In
the CDFM the one-body density matrix ρ(r, r′) of the nucleus is written as a
coherent superposition of the one-body density matrices ρx(r, r′) for spherical
”pieces” of nuclear matter called ”fluctons” with densities ρx(r) = ρ0(x)Θ(x−
|r|), ρ0(x) = 3A/4πx3:

ρ(r, r′) =
∫ ∞

0

dx|f(x)|2ρx(r, r′) (4)

with

ρx(r, r′) = 3ρ0(x)
j1(kF (x)|r − r′|)
(kF (x)|r − r′|)

× Θ
(
x− |r + r′|

2

)
, (5)
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where j1 is the first-order spherical Bessel function,

kF (x) =
(

3π2

2
ρ0(x)
)1/3

≡ α

x
(6)

with

α =
(

9πA
8

)1/3

� 1.52A1/3 (7)

is the Fermi momentum of the nucleons in the ”flucton” with a radius x. In
Eq. (4) |f(x)|2 is the weight function that in the case of monotonically decreas-
ing local densities (dρ(r)/dr ≤ 0) can be obtained using a known density dis-
tribution for a given nucleus:

|f(x)|2 = − 1
ρ0(x)

dρ(r)
dr

∣∣∣∣
r=x

(8)

with the normalization
∫∞
0 dx|f(x)|2 = 1.

The main assumption of the CDFM is that properties of finite nuclei can be
calculated using the corresponding ones for nuclear matter, folding them with
the weight function |f(x)|2. Along this line, in the CDFM the symmetry energy
for finite nuclei and related quantities are assumed to be infinite superpositions
of the corresponding ANM quantities weighted by |f(x)|2:

s =
∫ ∞

0

dx|f(x)|2sANM (x), (9)

p0 =
∫ ∞

0

dx|f(x)|2pANM
0 (x), (10)

ΔK =
∫ ∞

0

dx|f(x)|2ΔKANM (x). (11)

The explicit forms of the ANM quantities sANM (x), pANM
0 (x), and ΔKANM (x)

in Eqs. (9), (10), and (11) are defined below. They have to be determined within
a chosen method for description of the ANM characteristics. In the present
work, as well as in Refs. [4, 10], considering the pieces of nuclear matter with
density ρ0(x), we use for the matrix element V (x) of the nuclear Hamiltonian
the corresponding ANM energy from the method of Brueckner et al. [5, 6]:

V (x) = AV0(x) + VC − VCO, (12)

where

V0(x) = 37.53[(1 + δ)5/3 + (1− δ)5/3]ρ2/3
0 (x)

+ b1ρ0(x) + b2ρ
4/3
0 (x) + b3ρ

5/3
0 (x)

+ δ2[b4ρ0(x) + b5ρ
4/3
0 (x) + b6ρ

5/3
0 (x)] (13)
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with b1 = −741.28, b2 = 1179.89, b3 = −467.54, b4 = 148.26, b5 = 372.84,
and b6 = −769.57. In Eq. (12) V0(x) is the energy per particle in nuclear matter
(in MeV) accounting for the neutron-proton asymmetry, VC is the Coulomb en-
ergy of protons in a flucton, and VCO is the Coulomb exchange energy. Thus, us-
ing the Brueckner theory, the symmetry energy sANM (x) and the related quan-
tities for ANM with density ρ0(x) (the coefficient a4 in Eq. (1)) have the forms:

sANM (x) = 41.7ρ2/3
0 (x) + b4ρ0(x) + b5ρ

4/3
0 (x) + b6ρ

5/3
0 (x), (14)

pANM
0 (x) = 27.8ρ5/3

0 (x) + b4ρ
2
0(x) +

4
3
b5ρ

7/3
0 (x) +

5
3
b6ρ

8/3
0 (x), (15)

and
ΔKANM (x) = −83.4ρ2/3

0 (x) + 4b5ρ
4/3
0 (x) + 10b6ρ

5/3
0 (x). (16)

In our method (see also [4,10]) Eqs. (14), (15), and (16) are used to calculate the
corresponding quantities in finite nuclei s, p0, and ΔK from Eqs. (9), (10), and
(11), respectively. We note that in the limit case when ρ(r) = ρ0Θ(R − r) and
|f(x)|2 becomes a δ function [see Eq. (8)], Eq. (9) reduces to sANM (ρ0) = a4.

3 Results of Calculations and Discussion

An illustration of a possible correlation of the neutron-skin thickness ΔR (the
difference of the rms radii of neutrons and protons) with the s and p0 parame-
ters extracted from the density dependence of the symmetry energy around the
saturation density for the Kr isotopic chain is given in Figure 1. The symmetry
energy and the pressure are calculated within the CDFM according to Eqs. (9)
and (10) by using the weight functions (8) calculated from the densities ob-
tained from self-consistent deformed Hartree-Fock calculations using four dif-
ferent Skyrme forces: SLy4, SGII, Sk3, and LNS. It can be seen from Figure 1
that there exists an approximate linear correlation between ΔR and s for the
even-even Kr isotopes with A = 82− 96. Similarly to the behavior of ΔR vs s
dependence for the cases of Ni and Sn isotopes [4], we observe a smooth growth
of the symmetry energy up to the semi-magic nucleus 86Kr (N = 50) and then
a linear decrease of s while the neutron-skin thickness of the isotopes increases.
This linear tendency expressed for Kr isotopes with A > 86 is similar for the
cases of both oblate and prolate deformed shapes. We note that all Skyrme
parametrizations used in the calculations reveal similar behavior; in particular,
the average slope of ΔR for various forces is almost the same. In addition, one
can see from Figure 1 a stronger deviation between the results for oblate and pro-
late shape of Kr isotopes in the case of SGII parametrization when displaying
the correlation between ΔR and s. This is valid also for the correlation between
ΔR and p0, where more distinguishable results for both types of deformation are
present. The neutron skin thickness ΔR for Kr isotopes correlates with p0 al-
most linearly, as in the symmetry-energy case, with an inflexion point transition
at the semi-magic 86Kr nucleus. In addition, one can see also from Figure 1 that
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the calculated values for p0 are smaller in the case of LNS and SLy4 forces than
for the other two Skyrme parameter sets. In general, we would like to note that
the behavior of deformed Kr isotopes shown in Figure 1 is comparable with the
one found for the spherical Ni and Sn isotopes having a magic proton number
that we discussed in Ref. [4]. The small differences just indicate that stability
patterns are less regular within isotopic chains with a non-magic proton number.

Figure 1. HF+BCS neutron skin thicknesses ΔR for Kr isotopes as a function of the
symmetry energy s and the pressure p0 calculated with SLy4, SGII, Sk3, and LNS forces
and for oblate and prolate shapes. The results for oblate and prolate shape forA = 82, 84
isotopes are indistinguishable.
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Figure 2. HF+BCS neutron skin thicknesses ΔR for Sm isotopes as a function of the
symmetry energy s (a), pressure p0 (b), and asymmetric compressibility ΔK (c) calcu-
lated with SLy4 force.

In Figure 2 we give results for the correlation between the neutron skin thick-
ness and the nuclear matter properties in finite nuclei with SLy4 Skyrme force
for a chain of Sm isotopes (A = 140 − 156) as a well established example of
deformed nuclei. In the calculations, all Sm isotopes are found to have a prolate
shape, except for the even-even 144Sm and 146Sm nuclei that are spherical. Sim-
ilar to the case of Kr isotopes with transition at specific shell closure, we observe
a smooth growth of the symmetry energy until the semi-magic nucleus 132Sm
(N = 82) and then an almost linear decrease of s while the neutron skin thick-
ness of the isotopes increases. An approximate linear correlation between ΔR
and p0 is also shown in Figures 2(b), while Figure 2(c) exhibits a very irregular
behavior of ΔR as a function of the asymmetric compressibility ΔK . Never-
theless, the values of ΔK deduced from our calculations are in the interval be-
tween –295 and –315 MeV that compare fairly well with the neutron-asymmetry
compressibility (K ′

Σ = −320 ± 180 MeV) deduced from the data [23] on the
breathing mode giant monopole resonances in the isotopic chains of Sm and Sn
nuclei.

The theoretical neutron skin thickness ΔR of Pb nuclei (A = 202 − 214)
against the parameters of interest, s, p0, and ΔK , is illustrated in Figure 3. In
this work we consider an extended chain of Pb isotopes in comparison to the
one analyzed in Ref. [4] by adding two nuclei lighter than 206Pb. Therefore, a
more precise study of the corresponding correlations, especially in the transition
region at the double-magic 208Pb nucleus, could be made. All predicted correla-
tions manifest an almost linear dependence and no pronounced kink at 208Pb is
observed. Similarly to Kr and Sm isotopes presented in this study (and isotopes
from Ni and Sn chains described in [4]), the LNS force produces larger symme-
try energies s than the other three forces also for Pb nuclei with values exceeding
30 MeV. Another peculiarity of the results obtained with LNS is the almost con-
stant ΔK observed in Figure 3(c). As can be seen from Figure 3, the value
of ΔR for 208Pb (0.1452 fm) deduced from the present HF+BCS calculations
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Figure 3. HF+BCS neutron skin thicknesses ΔR for Pb isotopes as a function of the sym-
metry energy s (a), pressure p0 (b), and asymmetric compressibility ΔK (c) calculated
with SLy4, SGII, Sk3, and LNS force.

with SLy4 force agrees with the recent experimentally extracted skin thickness
(0.156+0.025

−0.021 fm) using its correlation with the dipole polarizability [13].
Following the analysis within the CDFM approach [4], we give in Ref. [10]

more detailed study of the weight function |f(x)|2 (that is related to the density
and thus, to the structural peculiarities) to understand the kinks observed in the
relationships between ΔR and s, as well as ΔR and p0. The latter were shown
to exist [4] in double-magic nuclei in the cases of Ni (at 78Ni) and Sn (at 132Sn)
isotopic chains. As one can see in Figures 1 and 2 of the present work, they
exist also in the considered cases of Kr (at 86Kr) and Sm (at 144Sm) isotopes.
In contrast, such a kink does not exist in the case of Pb isotopic chain (at 208Pb,
particularly). Here we would like only to analyze the quantity

Δs± =
sA±2 − sA

sA
(17)

that is a direct measure of the relative deviation of the symmetry energy with
respect to the double-magic nuclei taking them as reference nuclei in each of the
chains, where the kinks are expected. The values of Δs+ and Δs− are listed
in Table 1, where the two numbers for each isotopic chain correspond to the
range of integration Δx that contains the peak of |f(x)|2 [10]. One can see
first from this Table that the absolute values of Δs+ and Δs− for Pb isotopes
are comparable with each other, which is not the case for the two other isotopic

Table 1. Relative deviation values of the symmetry energy Δs+ and Δs− [Eq. (17)] for
the range of integration Δx in Eq. (9) and for Ni, Sn, and Pb isotopes.

Ni Sn Pb

Δs+ -0.0137 -0.0070 -0.0035
Δs− -0.0072 -0.0049 0.0038
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chains. Second, and very important is that the Δs+ value turns out to be negative
and Δs− value to be positive for Pb isotopes at the range of integration Δx,
and this is the main difference regarding to the corresponding values (both are
negative) in the Ni and Sn chains.

4 Conclusions

A microscopic approach based on deformed HF+BCS calculations with Skyrme
forces has been used to investigate possible relationships between the neutron
skin thickness of deformed neutron-rich nuclei and the symmetry energy char-
acteristics of nuclear matter for these nuclei. Nuclear matter properties of nuclei
from Kr and Sm isotopic chains have been studied by applying the CDFM that
provides a transparent and analytic way to calculate the intrinsic quantities by
means of a convenient approach to the weight function. The analysis of the
nuclear symmetry energy s, the neutron pressure p0, and the asymmetric com-
pressibility ΔK has been carried out on the basis of the Brueckner EDF for
infinite nuclear matter.

For both Kr (A = 82 − 96) and Sm (A = 140 − 156) isotopic chains we
have found that there exists an approximate linear correlation between the neu-
tron skin thickness of these nuclei and their nuclear symmetry energies. Com-
paring with the spherical case of Ni, Sn, and Pb nuclei described in our previous
study [4], we note that the linear correlation observed in the Kr and Sm isotopes
is not smooth enough due to their different equilibrium shapes, as well as to the
transition regions between them. As known, the latter are difficult to be inter-
preted as they exhibit a complicated interplay of competing degrees of freedom.
Nevertheless, a smoother behavior is observed in Kr isotopes that is a conse-
quence of the stabilization of the oblate shapes along the isotopic chain. As
far as Sm isotopes are concerned, the shape evolution from the spherical to the
axially deformed configurations in the Sm isotopes causes a less pronounced lin-
earity of the observed correlation between ΔR and s. However, for both classes
of deformed nuclei an inflection point transition at specific shell closure, in par-
ticular at semi-magic 86Kr and 144Sm nuclei, appears for these correlations of
the neutron skins with s and p0.

We have analyzed in detail the existence of kinks on the example of the Ni
and Sn isotopic chains and the lack of such kink for the Pb isotopic chain. From
the study in Ref. [4] and the present analysis the kinks displayed by the Ni and
Sn can be understood as consequences of particular differences in the structure
of these nuclei and the resulting densities and weight functions.
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