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Abstract. The dynamical symmetry limit of the two-fluid Interacting Vec-
tor Boson Model (IVBM), defined through the chain Sp(12, R) ⊃ U(3, 3) ⊃
Up(3)⊗ Un(3) ⊃ SU∗(3) ⊃ SO(3), is considered and applied for the descrip-
tion of nuclear collective spectra exhibiting axially asymmetric features. It is
shown that the inclusion of a Majorana interaction to the SU∗(3) model Hamil-
tonian produces a stable triaxial minimum in the ground state energy surface.
The effect of the Majorana perturbation on the structure of the γ band is stud-
ied in detail as well. It is shown that by taking into account the full symplectic
structures in the considered dynamical symmetry of the IVBM, the proper de-
scription of the low-lying energy spectra and the γ-band energy staggering in
the full range from γ-unstable to γ-rigid nuclei can be achieved. The theoretical
predictions are compared with the experimental data for some even-even nuclei
assumed to be axially asymmetric.

1 Introduction

It has been known for a long time that in certain mass regions nuclei with static
deformation show deviations from a rigid axially symmetric picture. The pos-
sibility of static triaxial shapes for the ground state of nuclei is a long-standing
problem in nuclear structure physics despite the fact that very few candidates
have been found experimentally [1, 2]. In the geometrical approach the triaxial
nuclear properties are usually interpreted in terms of either the γ-unstable ro-
tor model of Wilets and Jean [3] or the rigid triaxial rotor model (RTRM) of
Davydov et al. [4]. These models exploit the geometrical picture of nucleus ac-
cording to the Collective Model of Bohr and Mottelson, expressed in terms of the
intrinsic variables β and γ where the former specifies the ellipsoidal quadrupole
deformation and the latter the degree of axial asymmetry. To describe the de-
viations from axial symmetry the model of Wilets and Jean assumes that the
potential energy is independent of the γ-degree of freedom, while in the model
of Davydov et al. one considers a harmonic oscillator potential with a minimum
at finite values of γ producing a rigid triaxial shape of the nucleus.
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The question of whether asymmetric atomic nuclei are γ-unstable or γ-rigid
has been an ongoing and active issue in nuclear structure physics for over half a
century. A number of signatures of γ-unstable and γ−rigid structures in nuclei
has been discussed [1, 2, 5]. While it might be thought that the potential energy
surfaces that are nearly γ-flat or display deep minima for some value of γ would
produce rather different nuclear spectra, this is in fact not the case. Indeed, the
predictions for γ-unstable and γ-rigid potentials are nearly identical for most
observables if the average value of γ in the first case, γrms, is equal to the γrigid

in the second, a situation occurring for example in the Os-Pt region. However,
a clear distinction arises in the γ band, where both the γ-unstable and γ-rigid
models exhibit an opposite energy staggering. The comparison of a γ-rigid ro-
tor and a γ-unstable models yields similar ground state band energies, but the
levels of γ-band are grouped as 2+, (3+, 4+), (5+, 6+), . . . in γ-unstable and
as (2+, 3+), (4+, 5+), . . . in γ-rigid models, respectively. Thus, obviously the
structure of the γ band is crucial for the identification of the shape in the real
nuclei and hence for the manifestation of the γ degree of freedom.

In Ref. [6] a dynamical symmetry limit of the two-fluid Interacting Vector
Boson Model (IVBM) introduced for the general case in [7], was considered
and found to be appropriate for the description of deformed even-even nuclei,
exhibiting triaxial features. It was shown there that the addition of Majorana in-
teraction to the SU∗(3) model Hamiltonian produces a stable triaxial minimum.
In this paper, we develop further our theoretical approach initiated in Ref. [6]
by considering in more details the spectra of some even-even transitional nuclei,
supposed to be axially asymmetric, in the framework of the symplectic IVBM
with Sp(12, R) as a group of dynamical symmetry. We focus on the γ-band
properties and show how the γ-band energies (and the corresponding energy
staggering) are affected by the presence of the introduced interaction. The theo-
retical predictions are compared with the experimental data for the two isotopes
192Os and 190Os, respectively. It is shown that by taking into account the full
symplectic structures in the considered dynamical symmetry of the IVBM, the
proper description of the energy spectra and the γ-band energy staggering of the
nuclei under considerations can be achieved.

2 The Algebraic Structure of the U(3,3) Dynamical Symmetry

It was suggested by Bargmann and Moshinsky [8] that two types of bosons are
needed for the description of nuclear dynamics. It was shown there that the con-
sideration of only two-body system consisting of two different interacting vector
particles will suffice to give a complete description of N three-dimensional os-
cillators with a quadrupole-quadrupole interaction. The latter can be considered
as the underlying basis in the algebraic construction of the phenomenological
IVBM.

The algebraic structure of the IVBM [9] is realized in terms of creation
and annihilation operators of two kinds of vector bosons u†m(α), um(α) (m =
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0,±1), which differ in an additional quantum number α = ±1/2 (or α = p and
n)−the projection of the T−spin (an analogue to the F−spin of IBM-2 or the
I−spin of the particle-hole IBM). We consider the following reduction chain of
the dynamical symmetry group Sp(12, R) of the IVBM for studying the triaxi-
ality in atomic nuclei:

Sp(12, R) ⊃ U(3, 3)
ν

⊃ Up(3) ⊗ Un(3) ⊃ SU∗(3) ⊃ SO(3),
[Np]3 [−Nn]3 (λ, μ) K L

(1)

where the labels below the different subgroups are the quantum numbers cor-
responding to their irreducible representations (irreps). As it was shown in
Ref. [6], this dynamical symmetry is appropriate for nuclei in which the one
type of particles is particle-like and the other is hole-like.

All bilinear combinations of the creation and annihilation operators of the
two vector bosons generate the boson representations of the non-compact sym-
plectic group Sp(12, R):

FL
M (α, β) =

∑
k,m

CLM
1k1mu

+
k (α)u+

m(β), (2)

GL
M (α, β) =

∑
k,m

CLM
1k1muk(α)um(β), (3)

AL
M (α, β) =

∑
k,m

CLM
1k1mu

+
k (α)um(β), (4)

where CLM
1k1m, which are the usual Clebsch-Gordan coefficients for L = 0, 1, 2

and M = −L,−L+ 1, ...L, define the transformation properties of (2),(3) and
(4) under rotations. We also introduce the following notations u†m(α = 1/2) =
p†m and u†m(α = −1/2) = n†

m. In terms of the p− and n−boson operators, the
Weyl generators of the ladder representation of U(3, 3) are [6]

p†kpm, p†kn
†
m, −nkpm, −n†

mnk, (5)

which are obviously a subset of symplectic generators (2)−(4). The first-order
Casimir operator of U(3, 3) is

C1[U(3, 3)] =
∑

k

(p†kpk − n†
knk), (6)

and does not differ essentially from the operator T0 defined in [7, 9]: T0 =
1
2C1[U(3, 3)] + 3

2 . The U(3, 3) irreps (ladder irreducible representations) con-
tained in either (even) < (1/2)6 > or (odd) < (1/2)53/2 > irrep of Sp(12, R)
are denoted by the shorthand notation ν, and their branching rules are given
in [6]. In the present application we consider only the even irreducible represen-
tation of Sp(12, R).
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The direct product Up(3)⊗Un(3) subalgebra is defined by the subset of the
number preserving generators (5) of U(3, 3), namely

p†kpm, −n†
mnk. (7)

Then, the combined (particle-hole) algebra U∗(3) is simply expressed by the
linear combination operatorsAkm ≡ {p†kpm−n†

mnk} of (7), which can also be
defined in the following way [6]

M = Np −Nn, LM = Lp
M + Ln

M , QM = Qp
M −Qn

M . (8)

The second order Casimir operator of U∗(3) can be defined by

C2[U∗(3)] =
∑
ij

AijAji. (9)

The SU∗(3) algebra is obtained by excluding the operatorM which is the single
generator of the O(2) algebra, whereas the angular momentum algebra SO(3)
is generated by the generators LM only.

We can label the basis states according to the chain (1) as:

|ν;Np, Nn; (λ, μ);KL 〉, (10)

where ν is the eigenvalue of the U(3, 3) first order Casimir operator,Np andNn

label the Up(3) ⊗ Un(3) irreps ,(λ, μ) are the SU∗(3) quantum numbers, K is
the multiplicity index in the reduction SU(3) ⊃ SO(3), and L is the angular
momentum of the corresponding collective state.

The basis states associated with the even irreducible representation of the
Sp(12, R) can be constructed by the application of powers of raising generators

Table 1. Symplectic classification of the SU∗(3) basis states.

N\ν · · · 6 4 2 0 −2 −4 −6 · · ·
0 (0, 0)

2
(2, 0) (1, 1)

(0, 0)
(0, 2)

4
(4, 0) (3, 1)

(2, 0)
(2, 2)
(1, 1)
(0, 0)

(1, 3)
(0, 2)

(0, 4)

6

(6, 0) (5, 1)
(4, 0)

(4, 2)
(3, 1)
(2, 0)

(3, 3)
(2, 2)
(1, 1)
(0, 0)

(2, 4)
(1, 3)
(0, 2)

(1, 5)
(0, 4)

(0, 6)

...
...

...
...

...
...

...
...
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FL
M (α, β) of the same group on the boson vacuum state. Each raising opera-

tor will increase the number of bosons N by two. The Sp(12, R) classification
scheme for the SU∗(3) boson representations is shown on Table 1. The ladder
representations of the non-compact algebra U(3, 3) act along the columns (“lad-
ders”) in the space of the boson representation of the Sp(12, R) algebra, defined
through the eigenvalues [ν] of the first Casimir operator (6) of the U(3, 3) alge-
bra. There exists a connection between this ladder representation (“vertical clas-
sification”) and the boson representation ofU(6) ⊂ Sp(12, R) (“horizontal clas-
sification”). Each row (fixed N ) of the table corresponds to a given irreducible
representation of the U(6). Note that the number of bosons N = Np + Nn is
not a good quantum number along the ladder representations of U(3, 3).

3 The Energy Spectrum

The most general Hamiltonian with SU∗(3) symmetry consists of the Casimir
invariants of SU∗(3) and its subgroup SO(3)

H = aC2[SU∗(3)] + bC2[SO(3)], (11)

where C2[SU∗(3)] = 1
6Q

2 + 1
2L

2 and the quadrupole operator QM = Qp
M −

Qn
M . The spectrum of this Hamiltonian is determined by

E = a(λ2 + μ2 + λμ+ 3λ+ 3μ) + bL(L+ 1). (12)

We point out that there are very large degeneracies in the resulting energy spec-
trum caused by the large values of λ and μ, which is not observed in the real nu-
clear spectra. In the present application we consider Sp(12, R) to be the group
of the dynamical symmetry of the model and use of the following Hamiltonian:

HU(3,3) = a1M
2 + b(N2

n −N2
p ) + a3C2[SU∗(3)] + b3C2[SO(3)], (13)

expressed as a linear combination of the Casimir operators of the different sub-
groups in the chain (1). The Hamiltonian (13) is diagonal in the basis (10). Then
its eigenvalues that yield the spectrum of the nuclear systems are:

E(ν;Np, Nn; (λ, μ);L) = a1ν
2 + b(N2

n −N2
p )

+ a3(λ2 + μ2 + λμ+ 3λ+ 3μ) + b3L(L+ 1). (14)

The energy spectrum determined by Eq.(14) will be the starting point for our
further calculations.

4 Triaxial Shapes in the IVBM

In Ref. [6] it has been shown that the addition of different types of perturbations
to theSU∗(3) energy surface, in particular the addition of a Majorana interaction
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and an O(6) term to the SU∗(3) model Hamiltonian, produces a stable triaxial
minimum in the potential energy surfaces. In present work we consider only
the inclusion of a Majorana interaction to the model Hamiltonian and study the
influence of the latter on the produced low-lying energy spectra. We expect that
many experimental properties of some deformed even-even nuclei, exhibiting
axially asymmetric features, to be explained with the perturbed Hamiltonian
under consideration.

We present a schematic calculations starting with the Hamiltonian H (13) to
which a perturbation term is added. The Hamiltonian which contains Majorana
interaction is written in the form

H = HU(3,3) + aM3, (15)

where the Majorana operator M3 = 2(p† × n†)(1) · (p × n)(1) is related to
the U(3) second order Casimir invariant C2[U(3)], defined in Ref. [9], via the
relation C2[U(3)] = N(N + 2) − 2M3. The Hamiltonian H contains the pure
SU∗(3) symmetry, when only a3 = 0 in Eq.(13).

In our application, the most important point is the identification of the exper-
imentally observed states with a certain subset of basis states from symplectic
extension of the model (Table 1). As in our previous applications of the sym-
plectic IVBM, we use the algebraic concept of “yrast” states, introduced in [10].
According to this concept we consider as yrast states the states with given L that
minimize the energy with respect to the number of vector bosons N that build
them. Since, the GSB in the triaxial nuclei is supposed to belong to the SU∗(3)
irreps of the type (λ = Np, μ = Nn), we map the states of the GSB onto the
ladder representation of U(3, 3) with ν = 0 (the middle column of Table 1).
The presented mapping of the experimental states onto the SU(3) basis states,
using the algebraic notion of yrast states, is a particular case of the so called
“stretched” states [11], which in our case are defined as the states of the type
(λ, μ) = (λ0 + k, μ0 + k), where k = 0, 2, 4, . . .. In the symplectic extension
of the IVBM the change of the number k, which is related in the applications
to the angular momentum L of the states, gives rise to the collective bands.
Thus, explicitely the states of the GSB are identified with the SU∗(3) multiplets
(λ, μ) = (k, k), where k = L. The same type of stretched states (λ0+k, μ0+k)
are associated with the states from the γ band, where the symplectic band head
structure of the considered band is determined by the initial number of phonons
N0 = λ0 + μ0 = 6 (λ0 = 2, μ0 = 4). Additionally, for the γ band to each sin-
gle SU∗(3) irrep (λ, μ) (k-fixed) we put into correspondence two consecutive
states with angular momentum L and L+ 1, respectively. This choice allows us
to reproduce the doublet structure of the γ-band. We note that the present choice
of the SU∗(3) multiplets associated with the states of the γ-band is quite similar
to the phonon multiplet structure of the γ-band states within the framework of
the IBM-1 in its O(6) limit, where the states cluster in doublets differing in the
O(5) label τ , which corresponds to the phonon-like quantum number Λ in the
γ-unstable model of Wilets and Jean [1]. The Majorana term in the Hamilto-

209



H.G. Ganev

Figure 1. Energies of the ground and γ bands as a function of the strength parameter a.
The values of the rest model parameters are a1 = 0.10343 MeV, b = −0.00274 MeV,
a3 = −0.00116 MeV and b3 = 0.02092 MeV.

nian H (15) is not diagonal in the basis (10), and hence mixes different SU(3)
multiplets.

To show the influence of the Majorana interaction on the energy spectrum,
we present the model calculations with the IVBM Hamiltonian (15) in which
the Majorana term is included and diagonalyzed numerically. The evolution of
the ground and γ bands as a function of the strength parameter a is shown in
Figure 1. From the figure one can see that the inclusion of the Majorana term
does not change the level spacings of the ground state band and hence preserves
its character. It can be also seen that the γ-rigid-like doublet structure of the
γ-band is conserved for a wide interval of negative values of the parameter a,
but for a = 0 MeV (no mixing of the SU(3) irreps) one obtains the well known
γ-unstable-like structure. For a � −0.005 MeV we obtain an intermediate
situation with more regular spacing of the energy levels.

5 Numerical Results

We apply our theoretical considerations for the calculation of the excitation en-
ergies of the ground and γ bands in the following two nuclei 192Os and 190Os,
which are assumed in the literature to be axially asymmetric. The values of the
model parameters a1 , b, a3, b3 and a are determined by fitting the energies of the
ground and γ-bands for the corresponding isotopes to the experimental data [12],
using a χ2-procedure. The theoretical predictions, compared with experiment,
are presented in Figure 2. From the figure one can see that the doublet structure,
predicted by the model, is slightly more pronounced than the experimentally
observed one. Nevertheless, the calculated energy levels of both ground and γ
bands agree rather well with the observed data.

There is a long-standing debate about the nature of the spectra of Os and
Pt isotopes. Some groups consider these nuclei as being γ-unstable [13]- [15],
while other as asymmetric rotor [4], which assumes rigidity in the γ degrees of
freedom. The Os and Pt isotopes have been treated in terms of the IBM in the
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Figure 2. Excitation energies for GSB and γ band in 192Os and 190Os, respectively.

transition region from the rotor to the γ-unstable limit [16]. In Ref. [17], these
isotopes are considered as a textbook example of this transition. In Ref. [18]
it was shown that the empirical deviations from the O(6) limit of the IBM, in
the Os-Pt region, can be interpreted by introducing explicitly triaxial degrees
of freedom, suggesting a more complex and possibly intermediate situation be-
tween γ−rigid and γ−unstable properties. Indeed, as it can be seen from the
presented examples, the experimentally observed level spacings in the γ band
are more regular. In terms of the potentials, this means that the true potentials
are γ-dependent.

A number of signatures of γ-unstable and γ−rigid structures in nuclei has
been discussed [1, 2, 5]. Many authors investigated the transition from the γ-
unstable regime to a triaxial behavior. The two nuclear phases, as was men-
tioned, are characterized by different doublet structures in the γ band. A use-
ful quantity that distinguishes these two cases is the energy staggering signa-
ture [1, 2]:

S(L) =
[E(L)− E(L− 1)]− [E(L − 1)− E(L− 2)]

E(2+
g )

, (16)

where E(L) stands for the energy of the state L+ belonging to the γ band. The
doublet structure is reflected in the sawtooth shape of the function S(L).

Analysis of the experimental staggering in different isotopic chains reveals
several different patterns [2] that can be categorized based on the standard limits
discussed in the IBM. Just to mention few cases, the Xe, Ba and Ce nuclei
are well-known examples [18–20] of the transition between vibrational and γ-
unstable structures that show strong staggering with negative S(L) values at
even-L and positive S(L) values at odd-L spins. The heavy rare-earth nuclei
(N > 82), known to display an axially symmetric behavior, show a similar
staggering pattern with a smaller overall magnitude than that observed in the
Xe, Ba and Ce isotopes. Nuclei that display staggering patterns very different
from those described above are scarce and include, for example, 192Os, 192Pt,
and 112Ru. These nuclei develop a staggering pattern where S(L) is positive for
even-L and negative for odd-L values, i.e. with the opposite phasing than in the
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Figure 3. Calculated and experimental staggering S(L) (16) of the γ band in 192Os and
190Os, respectively. The predictions of the sextic and Mathieu approach (SMA) [22] and
the IBM-1 with a term quadratic in (Q⊗Q⊗Q)0 [21] (IBM-1) are also shown.

other two cases mentioned above.
As shown in Ref. [2] the geometrical models and the IBM-based models can

describe the basic trends observed in the experimental staggering. It is shown
that the geometrical models that incorporate rigid triaxiality are characterized
by strong staggering with positive values for even-L and negative values for
odd-L spins. The staggering is largest for the RTRM where it increases linearly
with L and smallest for the models that use a harmonic-oscillator β2 potential.
Similarly, the IBM shows a jump over to the triaxial region along the transition
from U(5) to SU(3), characterized by the same staggering pattern as the one
found in the geometrical models but with a smaller overall magnitude.

To see whether this signature is captured by the present approach, we plotted
the function S(L) within the framework of the IVBM for the nuclei under con-
sideration in Figure 3, compared with the experimental data for 192Os and 190Os.
The predictions of the IBM-1 with a term quadratic in (Q ⊗Q ⊗ Q)0 [21] and
sextic and Mathieu approach (SMA) [22] that incorporate γ-rigid structures are
also shown. As can be seen from the figure, the present approach gives a stagger-
ing pattern for 192Os similar to the one observed in the geometrical models and
the IBM that incorporate triaxiality, and γ-unstable type for 190Os, respectively.
For the two nuclei under considerations, the phases of the observed staggering
patterns are correctly reproduced (in contrast to the SMA and IBM-1 in the case
of 190Os). For the nucleus 192Os, the γ-rigid staggering is well developed in
the region L ≥ 5 where also its magnitude increase with the spin. The latter
suggests that the triaxiality evolves together with the collectivity.

The geometry associated with a given Hamiltonian can be obtained by the
coherent state method. The standard approach to obtain the geometrical prop-
erties of the system is to express the collective variables in the intrinsic (body-
fixed) frame of reference. Then the ground-state energy surface is obtained by
calculating the expectation value of the boson Hamiltonian (15) with respect to
the corresponding coherent states. In the case of IVBM, the (scaled) energy sur-
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Figure 4. A contour plot of the scaled energy surface ε(ρ, θ) corresponding to the Hamil-
tonian (15) for 192Os and 190Os, respectively. Only the region ρ > 0 is depicted.

faces ε(ρ, θ) depend on two coherent state parameters ρ and θ, determining the
“shape” of the nucleus [6, 9]. The latter are related to the standard collective
model “shape” parameters β and γ. For more details we refer the reader to the
Refs. [6, 9].

We plot the ground state energy surfaces in 192Os and 190Os with the model
parameters obtained in the fitting procedure in the form of contour plots in Fig-
ure 4. From the figure one sees a nearly γ-flat potential with a very shallow
triaxial minimum for the ground state in 192Os, while for 190Os a typical for the
O(6) limit θ-unstable (or in IBM terms a γ-flat) potential is observed, as should
be for nuclei that show strong staggering with negative S(L) values at even-L
and positive S(L) values at odd-L spins (see Figure 3). The triaxial minimum
is obtained at ρ0 = 1 and θ0 = 900 which corresponds to γeff = 300 [6]. In
other words, the potential obtained in the present approach for 192Os is indeed
γ-dependent, representing the case of mixing of γ-flat and γ-rigid structures.

6 Summary

In the present work, we apply one of the dynamical symmetry limits of the two-
fluid Interacting Vector Boson Model, defined through the chain Sp(12, R) ⊃
U(3, 3) ⊃ Up(3) ⊗ Un(3) ⊃ SU∗(3) ⊃ SO(3), for the description of some
even-even nuclei, possessing axial asymmetry. We have investigated the effect
of the introduction of a Majorana interaction to the SU∗(3) model Hamiltonian.
It is shown that the latter introduces a potential which has a minimum at γ = 300

and change the γ-band doublet structure from that of γ-unstable to that of γ-
rigid type. This allows for the description of these two limiting cases, as well as
the situation in between, which is characterized by more uniform energy level
spacings in the γ-band, and described actually by γ-dependent potentials.

The theoretical predictions are compared with the experimental data for the
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two isotopes 192Os and 190Os, respectively. It is shown that by taking into ac-
count the full symplectic structures in the considered dynamical symmetry of
the IVBM, the proper description of the energy spectra and the γ-band energy
staggering of the nuclei under considerations can be achieved. The obtained
results show that the potential energy surface for 192Os possesses almost γ-flat
potential with a very shallow triaxial minimum, suggesting a more complex and
intermediate situation between γ-rigid and γ-unstable structures.

Acknowledgments

This work was supported by the Bulgarian National Foundation for scientific
research under Grant Number DID-02/16/17.12.2009.

References

[1] N.V. Zamfir and R.F. Casten, Phys. Lett. B 260 (1991) 265.
[2] E.A. McCutchan, D. Bonatsos, N.V. Zamfir, and R.F. Casten, Phys. Rev. C 76 (2007)

024306.
[3] L. Wilets and M. Jean, Phys. Rev. 102 (1956) 788.
[4] A.S. Davydov and G.F. Filippov, Nucl. Phys. 8 (1958) 237.
[5] Liao Ji-zhi, Phys. Rev. C 51 (1995) 141; C. Bihari et al., Phys. Scr. 77 (2008)

055201; C. Bihari et al., Phys. Scr. 78 (2008) 045201; Mani Varshney, Phys. Scr.
83 (2011) 015201.

[6] H.G. Ganev, Phys. Rev. C 84 (2011) 054318.
[7] A. Georgieva, M. Ivanov, P. Raychev, and R. Roussev, Int. J. Theor. Phys. 25 (1985)

1181.
[8] V. Bargmann and M. Moshynsky, Nucl. Phys. 18 (1960) 697; V. Bargmann and M.

Moshynsky, Nucl. Phys. 23 (1961) 177.
[9] H.G. Ganev, Phys. Rev. C 83 (2011) 034307.

[10] H. Ganev, V.P. Garistov, and A.I. Georgieva, Phys. Rev. C 69 (2004) 014305.
[11] D.J. Rowe, Rep. Prog. Phys. 48 (1985) 1419.
[12] Evaluated Nuclear Structure Data File (ENSDF),

http://ie.lbl.gov/databases/ensdfserve.html
[13] K. Kumar and M. Baranger, Nucl. Phys. A 122 (1968) 273.
[14] G. Leander, Nucl. Phys. A 273 (1976) 286.
[15] M. Seiwert, P. Hess, J. Maruhn, and W. Greiner, Phys. Rev. C 23 (1981) 2335; P.

Hess, J. Maruhn, and W. Greiner, J. Phys. G 7 (1981) 737.
[16] R.F. Casten and J.A. Cizewski, Nucl. Phys. A 309 (1978) 477.
[17] R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University, Ox-

ford, 1990).
[18] R.F. Casten, P. Von Brentano, K. Heyde, P. Van Isacker, J. Jolie, Nucl. Phys. A 439

(1985) 289.
[19] G. Puddu, O. Scholten, T. Otsuka, Nucl. Phys. A 348(1980) 109.
[20] N.V. Zamfir, R.F. Casten, Phys. Lett. B 152 (1985) 22.
[21] G. Thiamova, Eur. J. Phys. A 45 (2010) 81.
[22] A.A. Raduta and P. Buganu, Phys. Rev. C 83 (2011) 034313.

214


