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Abstract. In the paper a very general definition of intrinsic frame, by means of
group theoretical methods, is introduced. It allows to analyze nuclear properties
which are invariant in respect to the group which defines the intrinsic frame.
For example, nuclear shape is a well determined feature in the intrinsic frame
defined by the Euclidean group. It is shown that using of intrinsic frame gives
an opportunity to consider intrinsic nuclear symmetries which are independent
of symmetries observed in the laboratory frame. An importance of the notion of
partial symmetries is emphasized.

1 Introduction

A problem of possible existence of nuclear symmetries corresponding to high
order groups considered in nuclear intrinsic frame of reference has been pre-
dicted in earlier publications [1]. There is considered an example of tetrahedral
symmetries which is expected to produce large shell gaps in the single parti-
cle spectra of some nuclei. The characteristic for this point groups – four-fold
degeneracy – increases the average level spacing [2, 3]. This leads to specific
tetrahedral-magic shell-closures for nucleon numbers 32, 40, 56, 64, 70, 90-94,
112, and 136-138. There were a few experiments related to the problem of “tetra-
hedral”, e.g., Ref. [4, 5]. Similarly, in the Rare Earth nuclei such as 152,156Gd,
154,156Dy, 164Er, 164Yb, but also in the Actinides in 230−234U, there are some
signature which support the idea of “tetrahedral” nuclei, however, the results are
not unique [6, 7] and requires further experiments.

The intrinsic geometrical symmetries are related to an idea of intrinsic frame
generated by the Euclidean E(3) group. This kind of intrinsic coordinates allows
to define such properties like position of a nucleus in the space (the center of
mass), nuclear shape (deformation) and the orientation of a nucleus in respect to
the laboratory frame and similar features related to its geometrical properties.

There is a series of papers devoted to different definitions and properties of
an intrinsic frame. In nuclear physics the most interesting frame is the frame
which is attached to a nucleus. A rather general definition of the fixed-body
frame is described, e.g., by Biedenharn and Louck [9].

11
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Another idea of intrinsic frame is based on a separation of various types of
quantum motions. It was successfully analyzed by Eckart in molecular physics
[8]. It can be shown, however, that the Eckart condition is restricted only to
potentials with a single minimum. A generalization of his condition, which can
be used in case of potential energy with more than one minimum, was formulated
by Sayvetz [10, 11].

However, it was proved by Guichardet [12] that both kinds of motion, i.e.
rotation and vibration, cannot be, in general case, separated exactly. Another
interesting approach to an intrinsic frame and internal quantum motions was
done by Iwai [13], however, the method described in his paper can be applied, in
practice, only to a few-body systems. In this paper we follow a group theoretical
definition of the intrinsic frame, see [14].

2 Intrinsic Frame

A general definition of an intrinsic frame where a part of intrinsic coordinates is
defined as the group parameters can be summarized as follows:

• Let qlab = (qlab
1 , qlab

2 , . . . , qlab
s ) denotes the laboratory variables of the

nuclear model and q = (q1, q2, . . . , qs) their counterparts which will be
defined below.

• Let G denotes a Lie group acting by the operators ĝ in the space of nuclear
degrees of freedom qlab. The r parameter group G 	 g is parameterized
by r parameters g(θ) = g(θ1, θ2, . . . , θr). The operator ĝ represents the
element g ∈ G. The group G is chosen to describe (approximately) some
important nuclear motions. The group parameters θ are intended to be
used as a part of intrinsic variables.

• One defines the transformation formula from the laboratory to an G-intrinsic
frame (and partially intermediate intrinsic variables q) by the group trans-
formations ĝ : qlab → q:

q = ĝ qlab. (1)

The action (1) fulfils the group composition requirement

ĥ q = ĥ(ĝ qlab) = (ĥĝ) qlab = (̂hg) qlab (2)

for every g, h ∈ G. By definition (1) the intrinsic variables q are invariant
in respect simultaneous action ĥĥG, where h ∈ G. The first operator ĥ
acts on nuclear degrees of freedom qlab according to the formula (2) and
the second operator ĥG acts only on the group manifold of the group G as
the left shift operation

ĥĥGq = ĥ((̂h−1g) qlab) = ĥĥ−1ĝ qlab = ĝ qlab = q. (3)
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This operation corresponds to simultaneous shift of the intrinsic frame
and the laboratory variables by the same transformation which results in
unchanged variable q. Other words, this property makes the intrinsic vari-
ables rigid in respect to the motions (transformations) generated by the
chosen group G.

• At this stage we have too many intrinsic variables: s variable q and r
variables θ parameterizing the group G. Let us assume, in the laboratory
frame we have s > r degrees of freedom (the case s ≤ r should be
considered separately). It requires r additional conditions which exclude r
intrinsic variables q giving a set of independent variables containing s− r
intrinsic variables of the q-type and r group parameters (now intrinsic
variables) θ. A choice of the additional conditions:

Fi(q, θ) = 0, (4)

where i = 1, 2, . . . , r, is arbitrary but in practice it defines often physical
properties of remaining variables q.

A standard example of introducing an intrinsic frame in nuclear physics is a
rotating frame fixed to a nucleus. A systematic description of the nuclear surface
can be done by multipole surface deformation variables αlab

λμ , where in general
λ = 0, 1, 2, . . . and μ = −λ,−λ + 1, . . . , λ. They are spherical tensors which
transform in respect to the rotation group g ∈ SO(3) according to the standard
rule:

ĝ αlab
λμ =
∑
μ′
Dλ

μ′μ(g)αlab
λμ′ , (5)

where the group elements g = g(Ω) are parameterized by Euler angles Ω =
(Ω1,Ω2,Ω3). The functions Dλ

μμ′(Ω) denote Wigner functions for the rotation
group [16] . Now we can define the ’rotating’, intrinsic, counterparts of the
laboratory deformation variables αlab

λμ :

αλμ =
∑
μ′
Dλ

μ′μ(Ω)αlab
λμ′ . (6)

According to our consideration there are needed 3 additional conditions (the
group SO(3) has 3 parameters) which in many cases are chosen following the
Bohr suggestion for quadrupole case:

F1(α,Ω)=α21 =0, F2(α,Ω)=α2,−1 =0, F3(α,Ω)=α22 − α2−2 =0. (7)

These definition introduces the following set of of intrinsic collective variables
in the rotating frame: {α1μ, α20, α22, α3μ, . . . ,Ω}. In pure quadrupole case
the conditions (7) define, often used, a principal axes frame in respect to a
quadrupole shape.
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In quantum case the rotating frame has a bit different meaning as in the clas-
sical mechanics. The quantum rotation is not longer a dependence of the orien-
tation of a nucleus (body) in respect to the laboratory fixed frame as a function
of time. It is a quantum motion in which one can only give a probability of find-
ing the potential space orientation of a nucleus being in a given quantum state.
In the figure (1) one can find the probability distribution of the spin (nucleus)
orientation. The points on the figure are drawn by the vector having direction
of the spin and length equal to a probability of finding this orientation. These

Figure 1. The spin orientation probability for a rotating system. The wave functions:
ψ ∼ D5

M2(Ω) −D5
M,−2(Ω) (left) and ψ ∼ D5

M3(Ω) −D5
M,−3(Ω) (right)

examples shows that the quantum rotating nucleus (body) is moving randomly
according to the angular part of a quantum state describing the nucleus.

In the remaining part of the paper we consider only a class of rotating frames.
A general case can be analyzed in a similar way.

The details of the construction of an intrinsic frame are more intuitive con-
sidering single particle variables of the A–nucleon system. Let us denote by

�x lab
n = (xlab

n1 , x
lab
n2 , x

lab
n3 ), (8)

where n = 1, . . . , A, the radius raw-vector of n-th nucleon in the laboratory
frame. The position vector in the configuration space forA nucleons can denoted
as:

x = (�x1, �x2, �x3, . . . , �xA). (9)

and the laboratory frame basic, orthonormal unit vectors by:

�l1, �l2, �l3. (10)

To have a physical relation between the laboratory and the intrinsic (rotating)
frame the action (1) of the Euclidean group E(3) 	 ĝ(�a,Ω) can be defined as:

�x′n = ĝ(�a,Ω) �xn = (�xn − �a)R(Ω−1), (11)

where n=1,2,. . . A, 3-translation vector is �a = (a1, a2, a3) and the Euler angles
describing orientation of a nucleus in the laboratory frame are Ω = (Ω1,Ω2,Ω3).
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R(Ω) denotes the rotation matrix in R3. This action determines the following
transformation from the laboratory to the intrinsic frame xlab → x:

�xn = ĝ(�a,Ω) �x lab
n = (�x lab

n − �a)R(Ω−1). (12)

The Euclidean group has 6 parameters and require 6 additional conditions. The
first 3 conditions, k = 1, 2, 3:

Fk(x,�a,Ω) =
1∑A

n=1mn

A∑
n=1

mnxnk = 0 (13)

identify the translation vector �a with the center of mass system �Rcm. To show
this it is enough to sum up the equations (12) and use the conditions (13):

�0 =
1∑A

n=1mn

A∑
n=1

mn�xn

=
1∑A

n=1mn

A∑
n=1

mn(�x lab
n − �a)R(Ω−1) = (�Rcm − �a)R(Ω−1). (14)

Multiplying both sides from the right by the rotation matrix R(Ω) one gets �a =
�Rcm. It means that we introduce 3 collective variables �a which in the intrinsic
frame describe translational motion of the nucleus.

To simplify notation we assume that the intrinsic frame is the center of mass
frame i.e. �a = 0.

The next 3 conditions are traditionally related to the traceless quadrupole
mass tensor:

Qlab
ij ≡

A∑
n=1

mn

(
3xlab

ni x
lab
nj − δij‖�x lab

n ‖2
)

(15)

Diagonalization of Qlab
ij by an orthogonal matrix D allows to define principal

axes of a body

D(Ω−1)TQlabD(Ω−1) = diag(Q1, Q2, Q3) (16)

in which the mass quadrupole tensor and, at the same time, the moment of inertia
are diagonal. For Q1 = Q2 = Q3 = Q1 the condition (16) defines 3 Euler
angles uniquely. In terms of spherical components of the mass quadrupole tensor
the condition (16) can be rewritten as:

Fk(x,�a,Ω) = Q
(2)
±1(x) = 0 for k = 4, 5

F6(x,�a,Ω) = Q
(2)
2 (x)−Q(2)

−2(x) = 0. (17)

This conditions relate the orientation of a nucleus with 3 Euler angles parame-
terizing the Euclidean group E(3). They define three collective variables which
describe nuclear rotational motion.
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3 Symmetrization Group

The transformations from the laboratory to the intrinsic frame are, in general, not
unique 2. In many cases, to keep physical interpretation of intrinsic variables we
are not able to restrict their domains to make these transformations one-to-one
functions:

Laboratory
Intrinsic

x

y

y

y

3

2

11
2

31

Figure 2. A one-to-many transformation from laboratory to intrinsic variables.

A solution of the problem is to use a wider space of nuclear variables, with
repeated domains of uniqueness of the transformations from the laboratory to the
intrinsic frame, however, as a consequence, the space of physical states has to
fulfil an additional condition. It leads to a concept of symmetrization group [15].

In fact, one can find a group of transformationsh ∈ Gs acting on the intrinsic
variables (an intrinsic group, see definition in the section (4)):

(x,�a,Ω) h−→ (x′,�a′,Ω′) (18)

which leave invariant the corresponding laboratory coordinates:

xlab(x′,�a′,Ω′) = xlab(x,�a,Ω). (19)

It implies that for a given state Ψ(xlab)

Ψ(xlab) = Ψ(x,�a,Ω) = Ψ(x′,�a′,Ω′), (20)

i.e. the state defined in the intrinsic frame has to be invariant in respect to all
transformations belonging to the group Gs. The group Gs is called the sym-
metrization group. The symmetrization condition requires that for all h ∈ Gs:

T̄ (h)Ψ(x,�a,Ω) = Ψ(x,�a,Ω), (21)

where for h ∈ Gs the operators T̄ (h) represent action of the intrinsic group
Gs in the space of states expressed in terms of intrinsic variables, for detailed
definition see (37).
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The symmetrization group for the considered example of rotating intrinsic
frame is the octahedral point group acting on the intrinsic variables. In general,
for every particular choice of intrinsic variables the symmetrization group has to
be constructed separately. For example, for a non-standard choice of quadrupole
collective intrinsic variables (α20, α21,Ω). The additional 3 conditions are writ-
ten as F1,2(α,Ω) = α2±2 = 0 and F3(α,Ω) = α21 + α2−1 = 0. It gives the
following equations for elements–rotations of the symmetrization group deter-
mined by the Euler angles ω = (ω1, ω2, ω3) and the space inversion operation:

D2
±20(ω) = 0

D2
±2,1(ω)−D2

±2,−1(ω) = 0

D2
10(ω) +D2

−1,0(ω) = 0

D2
11(ω)−D2

1,−1(ω) = D2
−1−1(ω)−D2

−11(ω). (22)

The resulting group is a dihedral point group D2h. As we see the symmetrization
groups can be very different.

The requirement of symmetrization has to be fulfilled by the intrinsic Hamil-
tonian itself:

T̄ (h)H T̄ (h)−1 = H, (23)

for all h ∈ Gs. In addition, the action of the intrinsic Hamiltonian should be
closed within the subspace of symmetrized functions:

K = {ψ : T̄ (h)ψ = ψ for all h ∈ Gs}. (24)

This condition can be formulated as follows:

Hψ ∈ K for all ψ ∈ K, (25)

because only in this case we are working in the physical subspace in which every
intrinsic state has a unique counterpart in the laboratory frame.

In practice, one encounters a few approaches to the problem of symmetriza-
tion of intrinsic nuclear Hamiltonian, see also [15]:

0. Already Symmetrized.
The Hamiltonian Ĥ is constructed directly to be invariant in respect to an ap-
propriate symmetrization group. The action of Ĥ is closed within the physical
subspace K.

1. Projection.
The appropriate Hamiltonian Ĥ1 is obtained from a non-invariant initial Hamil-
tonian Ĥ by projection onto the space of symmetrized functionsK:

Ĥ1 = PKĤPK, (26)

wherePK is the projection operator onto the spaceK. In general it can be written
(for discrete, finite symmetrization group Gs):

PK =
1

card(Gs)

∑
g∈Gs

g, (27)
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A. Góźdź, A. Pȩdrak, A. Szulerecka, A. Dobrowolski, J. Dudek

where card(Gs) denotes the order (number of elements) of the symmetrization
group.

The constructed Hamiltonian Ĥ1 fulfills required properties of physical Hamil-
tonian. It can be rewritten by means of the spectral theorem:

Ĥ1 =
∑

ν

E1;ν |Ψ1;ν〉〈Ψ1;ν |. (28)

Hamiltonian Ĥ1 has the symmetry Gs or larger, independently of the symmetry
of the original Hamiltonian Ĥ. The eigenvalues and eigenvectors of Ĥ1, in
general, differs from the initial Hamiltonian Ĥ.

2. Selection.
First one needs to solve the eigenequation for the Gs non-invariant Hamiltonian
Ĥ in the full space of intrinsic functionsKfull (the space of all square integrable
functions of intrinsic variables):

Ĥ|Ψn〉 = En|Ψn〉. (29)

Next, one needs to choose solutions which fulfill the symmetrization condition:

PK|Ψn〉 = |Ψn〉 ≡ |Ψn〉K. (30)

The spectral decomposition of the resulting intrinsic Hamiltonian is:

Ĥ2 =
∑

n

En|Ψn〉KK〈Ψn|, (31)

where summation is only over selected symmetrized eigenstates of the initial
Hamiltonian.

One can show, the eigensolutions of the Hamiltonian Ĥ2 are also eigenso-
lutions of the first Hamiltonian Ĥ1. The opposite property is, generally, not
fulfilled [15].

One needs to notice a typical example of collective nuclear models: the orig-
inal Bohr Hamiltonian (five dimensional harmonic oscillator) and its different
modifications are not invariant in respect to the symmetrization group (the ap-
propriate octahedral point group, Gs = O). In this context they are unphysical
Hamiltonians.

Then, to recover symmetrization, the second procedure is used, i.e. selection.
The Bohr’s type of the collective models use the eigenstates which are invariant
in respect to Gs and which are chosen from the full set of original Hamiltonian.

4 Intrinsic Groups

It has been shown, that structure of intrinsic space is more complicated and it is
constrained by the artificial symmetry group Gs. The same one can say about
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any intrinsic Hamiltonian which has to be invariant in respect to the symmetriza-
tion group, which, in fact, is not its physical symmetry. On the other hand the
symmetries defined in the intrinsic frame are independent of these which are
defined in the outer, laboratory frame. The best tool for analysis of symmetries
in an intrinsic frame, it is to define, besides of the transformation groups acting
in laboratory frame, the intrinsic groups acting in the corresponding intrinsic
frame. The definition of intrinsic groups is based on the so called left and right
shift operations on the group manifolds, however, for physical applications the
definition given in the textbook [17] is more appropriate.

Def. For each element g of the group G, one can define a corresponding
operator g in the group linear space LG as:

gS = Sg, for all S ∈ LG. (32)

The group formed by the collection of the operators g is called the intrinsic group
G of G.

The most important properties are:

• Both, the laboratory and its intrinsic counterpart commute:

[G,G] = 0. (33)

It means that laboratory and intrinsic symmetries are independent, as it
was already mentioned.

• The groups G and G are anti-isomorphic. It allows to use all properties of
the laboratory group like, e.g. representations, Clebsch-Gordan coupling
coefficients and others, to intrinsic groups.

As an example, one can again consider the most popular type of intrinsic frame,
the rotating frame and the corresponding intrinsic group G = SO(3). Let us
come back to an example of the A-nucleon system and denote by ĥ(Ω), where
h = h(Ω) ∈ SO(3), the rotation operator in the laboratory frame. Here, the
symbol Ω denotes, as before, Euler angles of a rotation h. The action of the
rotation intrinsic group g ∈ SO(3) onto intrinsic nucleon coordinates {xnk} can
be written as:

xnk = ĥ(Ω)xlab
nk =
∑
k′
Rk′k(Ω)xlab

nk′ (34)

x′nk = ĝxnk =
∑
k′
Rk′k(g−1)xnk′ (35)

Ω′ = ĝΩ = Ωg, (36)

whereR(Ω) represents the rotation matrix in three dimensional Euclidean space
an Ωg is composition of two rotations Ω and g.
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They define an action of the intrinsic group SO(3) 	 g in the space of func-
tions of intrinsic variables:

T̄ (g)ψ(x,Ω) = ψ(ĝx,Ωg−1). (37)

However, to have action which does not jump out of the set of intrinsic variables
the additional conditions (4) have to be taken into account. Instead of general
consideration we can show the problem on the example of the rotating body-
fixed frame (17). One needs to find the maximal subgroup of SO(3) which does
not change the principal axes condition: Q(2)

±1(x) = 0, Q(2)
2 (x) = Q

(2)
−2(x).

Because the quadrupole tensor transforms under the intrinsic rotation group
as:

Q′(2)
μ (x) = ĝQ(2)

μ (x) = (38)

D2
0μ(g−1)Q(2)

0 (x) +
[
D2

−2μ(g−1) +D2
2μ(g−1)

]
Q

(2)
2 (x) (39)

The requirements Q′(2)
±1(x) = 0 and Q′(2)

2 (x) = Q
(2)
−2(x) lead to the following

equations for allowed intrinsic rotations in the intrinsic variables

D2
0,±1(g

−1) = 0

D2
−2±1(g

−1) +D2
2±1(g

−1) = 0
D2

02(g
−1)−D2

0,−2(g
−1) = 0

D2
−2,−2(g

−1) +D2
2,−2(g

−1) = D2
−22(g

−1) +D2
22(g

−1). (40)

Solutions of the equations (40) can be identified with all intrinsic rotations which
collection results in an octahedral point group acting in the intrinsic variables
(x,Ω). This statement is true under assumption that both Q(2)

0 (x) and Q(2)
2 (x)

are independent.
It gives an important hint: due to the additional conditions required to

define an intrinsic frame not all rotations are allowed in the intrinsic frame.
The same remark is true for a general case.

There arise a question which operations are allowed in the intrinsic variables
space ? A general answer is that all operations which leave the conditions (4)
invariant do not violate the structure of the intrinsic space.

On the other hand, if we construct the set of independent (not all variables
q) intrinsic variables which consists of {ξ, θ}, where ξ = ξ(q), then any one-
to-one transformation (ξ, θ) → (ξ′, θ′) is an allowed transformation which can
be potentially a symmetry operation. It is a pity, however, further analysis of
allowed transformation depends on a model under considerations.

5 Partial Symmetries – Non-Orthogonal Decomposition

To simplify notation, let us consider the quadrupole+octupole model of intrin-
sic Hamiltonian without coupling between collective vibrations and rotations,
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where the intrinsic collective variables α20, α22, {α3μ},Ω are determined by
the shape of nuclear surface :

R(ϑ, φ) = R0

(
1 + α20Y20(ϑ, φ) + α22(Y22(ϑ, φ) + Y2,−2(ϑ, φ))

+
3∑

μ=−3

α�
3μY3μ(ϑ, φ)

)
. (41)

Extension to general case is straightforward. Lack of coupling between com-
muting vibrational and rotational terms implies the following structure of the
intrinsic Hamiltonian

Ĥ = Ĥvib + Ĥrot = Tvib;2 + Tvib;3 + Vvib + Ĥrot, (42)

where T denote vibrational quadrupole and octupole kinetic energy,V is respon-
sible for a potential energy and Ĥrot describes a generalized rotor Hamiltonian
(the operator built as a sum of polynomials constructed from a set of intrinsic
angular momentum operators) [18, 19].

Because the Hamiltonian is expressed in intrinsic variables it is invariant in
respect to laboratory rotations, as should be. It implies the angular momen-
tum quantum numbers J,M to be good quantum numbers. The formal intrinsic
symmetry GH of the Hamiltonian Ĥ is a direct product of symmetry groups
for vibrational and rotational terms, the indices vib and rot, respectively. How-
ever, the formal symmetry contains an important unphysical part – all elements
from the symmetrization group Gs = O. The following diagram shows relations
among engaged groups (below are shown labels of irreducible representations
required for labelling eigenvectors of Ĥ):

Ĥ = Ĥvib + Ĥrot

↓ ↓ ↓
Gs ⊂ GH = Gvib × Grot

↓ ↓ ↓ ↓
Γs = 0 σ Γv Γr

(43)

The physical symmetry group should be constructed from the elements of GH

after excluding all elements of the symmetrization group.
The problem how to construct the appropriate group, if exist, is still not

solved.
It turns out, however, that not only symmetry of a Hamiltonian is important

but also symmetries of its parts can contribute in properties of a nucleus. We call
them partial symmetries.

Let us recall the the Hamiltonian (42), where the vibrational part is repre-
sented by vibrational part of the quadrupole Bohr Hamiltonian Tvib;2 and a pure
octupole Tvib;3 term.

The quadrupole part

Tvib;2 =
1
2

{
1
β4

∂

∂β
β4 ∂

∂β
− 1
β2 sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+ β2

}
(44)
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is invariant in respect to an intrinsic octahedral group Oquad which acts only on
the quadrupole variables.

Observation: the vibrational part of kinetic energy operator of the Bohr
Hamiltonian is invariant in respect to an appropriate octahedral group (the ro-
tational part breaks the total symmetry to dihedral one).

A similar form can be obtained for the octupole case. The vibrational kinetic
energy operator, for the constant mass tensor, can be written as

Tvib;3 = − �2

2B3

∑
μ

∂

∂α3μ

∂

∂α�
3μ

(45)

and it is invariant in respect to an intrinsic rotation group SO(3)oct acting only
on octupole degrees of freedom.

Summarizing: the quadrupole kinetic energy is octahedrally invariant (due
to restriction on quadrupole variables superimposed by the conditions defining
intrinsic frame) and the octupole part of vibrational kinetic energy is invariant in
respect to a specific rotation group.

It follows, the potential energy operator in the intrinsic frame, to be a correct
physical operator, should have an octahedral symmetry or larger. Similarly the
rotational term Ĥrot should have the appropriate octahedral symmetry or larger.

Assume now a weak (or better NO) coupling between octupole and quadrupole
degrees of freedom.

In this case, eigenvectors of this Hamiltonian can be factorized:

Ψvib;2;vib;3;JMν(α,Ω) = φvib;2(α2)φvib;3(α3)RJMν (Ω). (46)

Because of symmetry properties of the quadrupole, octupole and the rotational
part of the Hamiltonian Ĥ, each factor in the decomposition (46) belong to an
appropriate, irreducible representation of the corresponding symmetry group:

Oquad : φvib;2(α2)→ φvib;2
σ2Γ2a2

(α20, α22)

SO(3)oct : φvib;3(α3)→ φvib;3
σ3Γ3a3

({α3μ})
Grot : RJMν(Ω)→ RJM

σrΓrar
(Ω), (47)

where σk describe possible equivalent irreducible representations, Γv = (Γ2,Γ3)
see the diagram (43) and ak label vectors within an irreducible representation.

The factorization (46) and (47) suggests existence of degenerated states due
to partial symmetries. However, the problem is more complicated because, at
the same time, the physical states have to be invariant in respect to the sym-
metrization group Gs. It diminishes a possible degeneration, or destroys it at all.
It means, that every case requires careful analysis.

A similar situation is in case of transition among states. The transition opera-
tor can be decomposed into tensor parts in respect to required partial symmetries.
The matrix elements of these operators can be factorized into the quadrupole,
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octupole and the rotational part. It means, one can expect, the partial symmetry
quantum numbers can play an important role in special selections rules among
states described by these symmetries. The problem is not solved till now in a
satisfactory way.

6 Conclusions

General notion of intrinsic frame based on the group theoretical approach is
a good tool for defining intrinsic variables describing a quantum motion of a
nucleus. Usually a transformation to intrinsic frame is not unique. Because of
a physical reason, instead of cutting domains of intrinsic variables, one needs
to introduce a symmetrization group Gs. It complicates structure of space of
states because the space has to be composed of scalar functions in respect to
Gs. In addition, a part of intrinsic variables lose their standard transformation
properties. However, instead, we can partially separate intrinsic properties of a
nucleus like its shape from space position and orientation. The properties which
we are able to pull out to an existence depend on a group of motion used to
definition of intrinsic frame.

Other words, using of intrinsic variables allow to find additional symmetries
of a nucleus which are not seen from the laboratory frame.

A part of important problems related to symmetries in intrinsic variables
(mentioned in the paper) are not solved yet in a satisfactory way. Solutions of
these problems should allow for more detailed symmetry analysis of nuclear
spectra and their transitions. Maybe it will give a tool for explaining different
unexpected similarities observed in nuclear spectra.
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A. Góźdź, A. Pȩdrak, A. Szulerecka, A. Dobrowolski, J. Dudek

[10] A. Sayvetz, J. Chem. Phys. 7 (1939) 383-389.
[11] P.R. Bunker, P. Jensen, Molecular symmetry and spectroscopy, NRC Research

Press, Canada, 1998.
[12] A. Guichardet, Annales de l’I.H.P., section A,40, no. 3 (1984) 329-342.
[13] T. Iwai, J. Math. Phys. 28 (1987) 1315.
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