
NUCLEAR THEORY, Vol. 31 (2012)
eds. A. Georgieva, N. Minkov, Heron Press, Sofia

Nuclear Forces from Chiral Effective Field
Theory: Achievements and Challenges

R. Machleidt

Department of Physics, University of Idaho, Moscow, Idaho 83844-0903, USA

Abstract. In the past decade, there has been substantial progress in the deriva-
tion of nuclear forces from chiral effective field theory. Accurate two-nucleon
forces have been constructed at next-to-next-to-next-to-leading order (N3LO)
and applied (together with three-nucleon forces at NNLO) to nuclear few- and
many-body systems—with a good deal of success. This may suggest that the
80-year old nuclear force problem has finally been cracked. Not so! Some
pretty basic issues are still unresolved. In this talk, I focus on the two most
pressing ones, namely, the proper renormalization of the two-nucleon potential
and subleading many-body forces.

1 Introduction

The problem of a proper derivation of nuclear forces is as old as nuclear physics
itself, namely, almost 80 years [1]. The modern view is that, since the nuclear
force is a manifestation of strong interactions, any serious derivation has to start
from quantum chromodynamics (QCD). However, the well-known problem with
QCD is that it is non-perturbative in the low-energy regime characteristic for
nuclear physics. For many years this fact was perceived as the great obstacle for
a derivation of nuclear forces from QCD—impossible to overcome except by
lattice QCD.

The effective field theory (EFT) concept has shown the way out of this
dilemma. For the development of an EFT, it is crucial to identify a separation of
scales. In the hadron spectrum, a large gap between the masses of the pions and
the masses of the vector mesons, like ρ(770) and ω(782), can clearly be identi-
fied. Thus, it is natural to assume that the pion mass sets the soft scale, Q ∼ mπ,
and the rho mass the hard scale, Λχ ∼ mρ ∼ 1 GeV, also known as the chiral-
symmetry breaking scale. This is suggestive of considering a low-energy expan-
sion arranged in terms of the soft scale over the hard scale, (Q/Λχ)ν , where Q
is generic for an external momentum (nucleon three-momentum or pion four-
momentum) or a pion mass. The appropriate degrees of freedom are, obviously,
pions and nucleons, and not quarks and gluons. To make sure that this EFT is
not just another phenomenology, it must have a firm link with QCD. The link is
established by having the EFT observe all relevant symmetries of the underlying
theory, in particular, the broken chiral symmetry of low-energy QCD [2].
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The early applications of chiral perturbation theory (ChPT) focused on sys-
tems like ππ [3] and πN [4], where the Goldstone-boson character of the pion
guarantees that the expansion converges. But the past 15 years have also seen
great progress in applying ChPT to nuclear forces [5–23]. As a result, nucleon-
nucleon (NN ) potentials of high precision have been constructed, which are
based upon ChPT carried to next-to-next-to-next-to-leading order (N3LO) [19,
21, 23], and applied in nuclear structure calculations with great success.

However, in spite of this progress, we are not done. Due to the complexity
of the nuclear force issue, there are still many subtle and not so subtle open
problems. We will not list and discuss all of them, but instead just focus on the
two open issues, which we perceive as the most important ones:

• The proper renormalization of chiral nuclear potentials and

• Subleading chiral few-nucleon forces.

2 Renormalization of Chiral Nuclear Forces

2.1 The chiral NN potential

In terms of naive dimensional analysis or “Weinberg counting”, the various or-
ders of the irreducible graphs which define the chiral NN potential are given
by:

VLO =V (0)
ct + V

(0)
1π (1)
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(2)
ct + V

(2)
1π + V

(2)
2π (2)
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(4)
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1π + V
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where the superscript denotes the order ν of the low-momentum expansion. LO
stands for leading order, NLO for next-to-leading order, etc. Contact potentials
carry the subscript “ct” and pion-exchange potentials can be identified by an ob-
vious subscript. For more details concerning the above potentials, see ref. [23].

2.2 Nonperturbative renormalization of the NN potential

The two-nucleon system is characterized by large scattering lengths and shal-
low (quasi) bound states which require a nonperturbative treatment. Following
Weinberg’s prescription [5], this is accomplished by inserting the potential V
into the Lippmann-Schwinger (LS) equation:

T (�p ′, �p) = V (�p ′, �p) +
∫
d3p′′ V (�p ′, �p ′′)

MN

p2 − p′′2 + iε
T (�p ′′, �p) , (5)

where MN denotes the nucleon mass.
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In general, the integral in the LS equation is divergent and needs to be regu-
larized. One way to achieve this is by multiplying V with a regulator function

V (�p ′, �p) �−→ V (�p ′, �p) e−(p′/Λ)2n

e−(p/Λ)2n

. (6)

Typical choices for the cutoff parameter Λ that appears in the regulator are Λ ≈
0.5 GeV < Λχ ≈ 1 GeV.

In field theories, divergent integrals are not uncommon and methods have
been designed to deal with them. One regulates the integrals and then removes
the dependence on the regularization parameters (scales, cutoffs) by “renormal-
ization”. In the end, the theory and its predictions do not depend on cutoffs or
renormalization scales. So-called renormalizable quantum field theories, like
QED, have essentially one set of prescriptions that takes care of renormaliza-
tion through all orders. In contrast, EFTs are renormalized by “counter terms”
(contact terms) that are introduced order by order in increasing numbers.

Naively, the most perfect renormalization procedure is the one where the
cutoff parameter Λ is taken to infinity while stable and quantitative results are
maintained through the adjustment of counter terms. This was accomplished at
LO in the work by Nogga et al. [24]. At NNLO, the infinite-cutoff renormaliza-
tion procedure has been investigated in [25] for partial waves with total angular
momentum J ≤ 1 and in [26] for all partial waves with J ≤ 5. However, for
a quantitative chiral NN potential one needs to advance all the way to N3LO.
At N3LO, the 1S0 state was considered in Ref. [27], and all states up to J = 6
were investigated in Ref. [28]. From all of these works, it is evident that no
counter term is effective in partial-waves with short-range repulsion and only a
single counter term can constructively be used in partial-waves with short-range
attraction. Thus, for the Λ → ∞ renormalization prescription, even at N3LO,
there exists either one or no counter term per partial-wave state. This is inconsis-
tent with any reasonable power-counting scheme and prevents an order-by-order
improvement of the predictions.

To summarize: In the infinite-cutoff renormalization scheme, the potential is
admitted up to unlimited momenta. However, the EFT this potential is derived
from has validity only for momenta smaller than the chiral symmetry breaking
scale Λχ ≈ GeV. The lack of order-by-order convergence and discrepancies in
lower partial-waves demonstrate that the potential should not be used beyond
the limits of the effective theory [28] (see Ref. [29] for a related discussion).
The conclusion then is that cutoffs should be limited to Λ � Λχ (but see also
Ref. [30]).

Crucial for an EFT are regulator independence (within the range of valid-
ity of the EFT) and a power counting scheme that allows for order-by-order
improvement with decreasing truncation error. The purpose of renormalization
is to achieve this regulator independence while maintaining a functional power
counting scheme.

Thus, in the spirit of Lepage [31], the cutoff independence should be exam-
ined for cutoffs below the hard scale and not beyond. Ranges of cutoff indepen-
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Figure 1. χ2/datum for the reproduction of the np data in the energy range 35-125 MeV
(upper frame) and 125-183 MeV (lower frame) as a function of the cutoff parameter Λ
of the regulator function Eq. (6). The (black) dashed curves show the χ2/datum achieved
with np potentials constructed at order NLO and the (red) solid curves are for NNLO.

dence within the theoretical error are to be identified using ‘Lepage plots’ [31].
Recently, we have started a systematic investigation of this kind. In our work,
we quantify the error of the predictions by calculating the χ2/datum for the re-
production of the neutron-proton (np) elastic scattering data as a function of the
cutoff parameter Λ of the regulator function Eq. (6). We have investigated the
predictions by chiral np potentials at order NLO and NNLO applying Weinberg
counting for the counter terms (NN contact terms). We show our results for the
energy range 35-125 MeV in the upper frame of Figure 1 and for 125-183 MeV
in the lower frame. It is seen that the reproduction of the np data at these ener-
gies is generally poor at NLO, while at NNLO the χ2/datum assumes acceptable
values (a clear demonstration of order-by-order improvement). Moreover, at
NNLO one observes “plateaus” of constant low χ2 for cutoff parameters rang-
ing from 450 to 850 MeV. This may be perceived as cutoff independence (and,
thus, successful renormalization) in the relevant range of cutoff parameters.

3 Few-Nucleon Forces and What is Missing

We will now discuss the other issue we perceive as unfinished and important,
namely, subleading chiral few-nucleon forces.

Nuclear three-body forces in ChPT were initially discussed by Weinberg [7].
The three-nucleon force (3NF) at NNLO, was derived by van Kolck [10] and
applied, for the first time, in nucleon-deuteron scattering by Epelbaum et al. [32].
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The leading 4NF (at N3LO) was constructed by Epelbaum [33] and found to
contribute in the order of 0.1 MeV to the 4He binding energy (total 4He binding
energy: 28.3 MeV) in a preliminary calculation [34], confirming the traditional
assumption that 4NF are essentially negligible. Therefore, the focus is on 3NF.

For the order of a 3NF, we have

ν = 2 + 2L+
∑

i

Δi , (7)

whereL denotes the number of loops and Δi is the vertex index. We will use this
equation to analyze 3NF contributions order by order. The first non-vanishing
3NF occurs at ν = 3 (NNLO), which is obtained when there are no loops (L =
0) and

∑
i Δi = 1, i.e., Δi = 1 for one vertex while Δi = 0 for all other

vertices. There are three topologies which fulfill this condition, known as the
two-pion exchange (2PE), one-pion exchange (1PE), and contact graphs.

The 3NF at NNLO has been applied in calculations of few-nucleon reac-
tions [35], structure of light- and medium-mass nuclei [36–41], and nuclear and
neutron matter [42–45] with a great deal of success. However, the famous ‘Ay

puzzle’ of nucleon-deuteron scattering [32] and the analogous problem with the
analyzing power in p-3He scattering [46] is not resolved. Furthermore, the spec-
tra of light nuclei leave room for improvement [36]. Since we are dealing with
a perturbation theory, it is natural to turn to the next order when looking for
improvements.

The next order is N3LO, where we have loop and tree diagrams. For the
loops, we have L = 1 and, therefore, all Δi have to be zero to ensure ν = 4.
Thus, these one-loop 3NF diagrams can include only leading order vertices,
the parameters of which are fixed from πN and NN analysis. One sub-group
of these diagrams (the 2PE graphs) has been calculated by Ishikawa and Ro-
bilotta [47], and the other topologies have been evaluated by the Bochum-Bonn
group [48, 49]. The N3LO 2PE 3NF has been applied in the calculation of
nucleon-deuteron observables in Ref. [47] causing little impact. Very recently,
the long-range part of the chiral N3LO 3NF has been tested in the triton [50]
and in three-nucleon scattering [51] yielding only moderate effects. The long-
and short-range parts of this force have been used in neutron matter calculations
(together with the N3LO 4NF) producing relatively large contributions from the
3NF [52]. Thus, the ultimate assessment of the N3LO 3NF is still outstanding
and will require more few- and many-body applications.

In the meantime, it is of interest to take already a look at the next order
of 3NFs, which is N4LO or ν = 5 (of the Δ-less theory to which the present
discussion is restricted because of lack of space). The loop contributions that
occur at this order are obtained by replacing in the N3LO loops one vertex by a
Δi = 1 vertex (with LEC ci), which is why these loops may be more sizable than
the N3LO loops. The 2PE topology has already been evaluated [53] and turns out
to be of modest size; moreover, it can be handled in a practical way by summing
it up together with the 2PE topologies at NNLO and N3LO [53]. However, there
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are four more loop topologies, which are very involved and that have not been
worked out yet. Finally, a tree topology at N4LO provides a new set of 3N
contact interactions, which have recently been derived by the Pisa group [54].
Contact terms are typically simple (as compared to loop diagrams) and their
coefficients are unconstrained (except for naturalness). Therefore, it would be
an attractive project to test some terms (in particular, the spin-orbit terms) of
the N4LO contact 3NF [54] in calculations of few-body reactions (specifically,
the p-d and p-3He Ay) and spectra of light nuclei.

4 Conclusions and Outlook

The past 15 years have seen great progress in our understanding of nuclear forces
in terms of low-energy QCD. Key to this development was the realization that
low-energy QCD is equivalent to an effective field theory (EFT) which allows
for a perturbative expansion that has become known as chiral perturbation the-
ory (ChPT). In this framework, two- and many-body forces emerge on an equal
footing and the empirical fact that nuclear many-body forces are substantially
weaker then the two-nucleon force is explained automatically.

In spite of the great progress and success of the past 15 years, there are still
some unresolved issues. One problem is the proper renormalization of the chiral
two- and many-nucleon potentials, where systematic investigations are already
under way (cf. Sec. 2).

The other unfinished business are the few-nucleon forces beyond NNLO
(“sub-leading few-nucleon forces”) which are needed to hopefully resolve some
important outstanding nuclear structure problems. At orders N3LO and N4LO
very many new 3NF structures appear, some of which have already been tested.
However, in view of the multitude of 3NF topologies it will take a while until we
will have a proper overview of impact and convergence of these contributions.

If the open issues discussed in this paper will be resolved within the next few
years, then, after 80 years of desperate struggle, we may finally claim that the
nuclear force problem is essentially under control. The greatest beneficiaries of
such progress will be the fields of exact few-nucleon calculations and ab initio
nuclear structure physics.
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