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Abstract. The low-energy spectra and electromagnetic transitions for a series
of heavy deformed nuclei are analyzed in the framework of the pseudo-SU(3)
model. A realistic Hamiltonian with proton and neutron single particle energies,
monopole pairing interaction, in addition to the quadrupole-quadrupole term, is
used. The strengths of the interactions are fixed with values from systematics.
The effect of the single-particle energies on the overall spectra and electromag-
netic transition is analyzed.

1 Introduction

The pseudo-SU(3) model has been proven to be a good tool for calculating the
electromagnetic transitions in heavy deformed nuclei [1]. The model has been
applied successfully to a series of even-even [2–4, 8] and odd-mass [5–7] heavy
deformed nuclei. The first step in any application of the pseudo-SU(3) model
is to build a many-body basis. For the pseudo-SU(3) scheme the proton and
neutron valence Nilsson single-particle levels are filled from below for a fixed
deformation, which in the case of 160Dy is ε2 = 0.25 [9]. It allows the deter-
mination of the most probable normal and unique parity orbital occupancies. Of
the 16 valence protons, 8 occupy normal parity orbitals, and 8 intruder orbitals.
Of the 12 valence neutrons, 8 are in normal parity orbitals and 4 in intruder or-
bitals. Since for some nuclei, this particle distribution on normal and intruder
orbitals becomes difficult, the orbitals beeying very close together, the effect of
the strength of the single particle energies on the low-energy spectra and elec-
tromagnetic transitions was analyzed. We studied this effect in 160−162Dy and
168Er nuclei.

Results for energy levels of the four lowest-lying bands in 160,162Dy and
168Er, as well as B(E2) transition strengths between the levels and the B(M1)
strength distribution of the ground-state are reported. Calculations were carried
out within the framework of pseudo-SU(3) model using realistic single-particle
energies and quadrupole-quadrupole and pairing interaction strengths fixed from
systematics, while four “rotor like” terms were adjusted nucleus-by-nucleus to
obtain the best description of each energy spectrum. Comparison with exper-
imental energies and B(E2) transition strengths is in general very favorable.
However, some excited bands are predicted to be too high in energy. Includ-
ing other terms in the Hamiltonian would probably correct this effect. Scaling

135



G. Popa

down the single-particle energies allows a nearly perfect description of the en-
ergy spectra. In the same time, electromagnetic transitions are calculated in the
three nuclei, with regular and reduced single particle strength.

2 Model Interaction

The Hamiltonian consists of quadrupole-quadrupole (Q · Q), proton (π) and
neutron (ν) single particle energies (Hπ

sp + Hν
sp), proton and neutron pairing

(Hπ
P and Hν

P ), as well as the rotor part (HROT ).

H = χQ ·Q+Hπ
sp +Hν

sp −GπH
π
P −GνH

ν
P +HROT (1)

where
HROT = aJ2 + bK2

J + a3C3 + asymC2 (2)

C2 and C3 terms are the second and third order Casimir invariants of SU(3),
which are related to the deformation of the nucleus. J2 is the total angular mo-
mentum operator. K2

J is the K-band splitting operator resolving the multiple
occurrences of the same angular momentum within an SU(3) irreducible rep-
resentation (irrep). The single particle energies are calculated in the standard
way:

Hσ
sp = H0 + cl̂ŝ+ dl̂2 = HOSC − �ω̄0κ(2l̂.ŝ+ μl̂2) (3)

where σ = π or ν, H0 is the spherical oscillator for which SU(3) is an exact
symmetry, and the constants values are taken from [10]. For 160Dy the �ω0 = 41
MeV×A−1/3 = 7.55 MeV is the oscillator constant for the equivalent spherical
nucleus and the constants κ and μ have the values [10]: κπ = 0.06370, κν =
0.60, μπ = 0.06370, and μν = 0.42.

3 Parameters

Pseudo-SU(3) model was used to calculate the normal parity bands in the 160Dy,
162Dy, and 168Er nuclei. These nuclei exhibit rotational ground-state bands and
a few Kπ = 0+ band heads below 2 MeV . As in other applications of the
pseudo-SU(3) model [2,3,5], approximatively twenty pseudo-SU(3) irreps with
the largest values of the second order Casimir operatorC2 (Q ·Q = 4C2− 3L2)
are used in building the basis states. For example, for 162Dy the first twenty-
one irreps with the largest C2 values were used. Strengths of the quadrupole-
quadrupole and pairing interactions were fixed, respectively, at values typical
of those used by other authors: χ = 35 A5/3 MeV ; Gπ = 21/A MeV and
Gν = 19/A MeV . Calculations were carried out with the single-particle orbit-
orbit (l2) interaction strengths fixed by systematics [10],

Dσ(σ = π, ν) = �ωκσμσ, (4)
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where �ω = 41/A1/3, and κσ and μσ are assigned their usual harmonic oscilla-
tor values [10]:

κπ = 0.0637, μπ = 0.60
κν = 0.0637, μν = 0.42. (5)

Hence, the a3 parameter was varied to yield a best fit to the energy of the
second 0+ state; the energy of the third 0+ was not included in the fitting pro-
cedure and as the results given below show, falls higher than the experimental
number for all of the nuclei considered.
As we have learned from the previous calculations [3, 4, 8], the other three pa-
rameters do not change the band-head energy of the second excited Kπ = 0+

band, but they can adjust the other bands. Therefore, the asym parameter was
adjusted to give a best fit to the first 1+ state, b was fitted to the value of the
band-head energy of the Kπ = 2+ band, and a was varied to get the moment
of inertia of the ground-state band correct. The full set of parameters is given in
Table 1. All of these four fitted parameters vary smoothly from one nucleus to
another. Actually, all four “free” parameters decrease as the mass number “A”
increases. The J2 interaction strength decreases from 1.0 × 10−3 for 160Dy to
−2.1 × 10−3 for 168Er, and the interaction strength of K2

J operator decreases
from 0.10 for 160Dy to 0.022 for 168Er. The asym parameter that is fitted to
the energy of the first 1+ state also decreases from 1.45 × 10−3 for 160Dy to
0.80× 10−3 for 168Er. The nucleus 168Er has one more pair of protons than the
Dysprosium nuclei. Since “A” is larger for 168Er than for the Dy isotopes, one
might expect even smaller values for the parameters, and while this is what is
observed for a and asym, the extra proton pair requires values for b and a3 that
are smaller than the ones for 160,162Dy.

Since some excited bands are predicted to be too high in energy, we may
miss some of the states in the energy gap. Other interactions, not yet included

Table 1. Parameters used for 160,162Dy and 168Er nuclei, in the pseudo-SU(3) Hamilto-
nian (1).

Parameter 168Er 162Dy 160Dy

�ω 7.40 7.52 7.55
χ × 10−3 6.84 7.27 7.42

Dπ -0.283 -0.287 -0.289
Dν -0.198 -0.201 -0.202
Gπ 0.125 0.130 0.131
Gν 0.101 0.105 0.106

a ×10−3 -2.1 0.0 1.0
b 0.022 0.08 0.10

asym × 10−3 0.80 1.40 1.45
a3 × 10−4 0.75 1.32 1.36
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Table 2. The second set of parameters used in the pseudo-SU(3) Hamiltonian correspond-
ing to reduced one-body interaction strengths.

Parameter 168Er 162Dy 160Dy

χ × 10−3 6.84 7.27 7.42
Dπ -0.153 -0.187 -0.141
Dν -0.107 -0.131 -0.099
Gπ 0.125 0.130 0.131
Gν 0.101 0.105 0.106

a ×10−3 -2.1 -1.6 -1.0
b 0.072 0.11 0.14

asym × 10−3 0.80 0.80 0.67
a3 × 10−4 0.18 0.80 0.64

in the Hamiltonian, may be responsible. Instead of introducing other terms,
however, we show that scaling down the single-particle energies allows a nearly
perfect description of the energy spectra. In this case, the a3 parameter was
again allowed to vary to gain the best fit to the energies of both the second and
third 0+ states. Allowing for a scaling of the Dσ (σ = π, ν) parameters, meant
that a, b, asym, and a3 had to be readjusted. The new parameter set is given in
Table 2.

4 Energy Spectra

The experimental and calculated energies of the lowest four energy bands in
162Dy are compared in Figure 1. For illustrative purposes, the energies and
M1 transition spectra are shown together for the two parameter sets used in the
calculations, from Tables 1 and 2. For both sets, the calculated results are in
good agreement with experiment. Likewise, the B(E2) transition probabilities
are in excellent agreement with the experimental data. As an example, the values
for 162Dy are given in Table 4.

The energy spectra calculated by diagonalizing the Hamiltonian (1), with
parameters from Table 1, are in excellent agreement with the experimental data
for the first three low-energy bands. These spectra are given in the left-hand-side
plot of the Figure1. The differences between the calculated and experimental
energy values are less than 5% for the ground-state bands for all nuclei, less
than 5% in the first exited K = 0+ band of 160Dy, 162Dy, and 168Er, less than
5% in the K = 2+ band of 164Dy, and less than 10% in the K = 2+ of 160Dy,
162Dy, and 168Er. The states in the second excited K = 0+ bands are higher in
values by about 0.5 MeV than the experimental ones. The moment of inertia
for this band is higher than the experimental one.

When Dσ (σ = π, ν) were scaled down to fit both excited 0+ energies, few
other improvements were obtained. The whole K = 0+

3 band moved down in
energy and the levels inside it were compressed such that the difference between
these calculated energies and the experimental ones ended up being less than
138
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Figure 1. Energy spectra of 162Dy obtained using Hamiltonian given by eq. (1) with
parameters from Table 1 (left side) and from Table 2 (right side). ‘Exp.’ represents the
experimental results and ‘Th.’ the calculated ones. The lower plot gives the theoretical
and experimental M1 transition strengths from the Jπ = 0+ ground-state to the various
Jπ = 1+ levels.

7%. The description of the K = 2+ band also improved. There was very little
change in the ground-state band, and also the K = 0+

2 band changed very little.
Similar results were obtained for 160Dy and 168Er. The difference in energy
between the calculated and experimental band-heads of the second excitedK=0
bands increases as the mass number A increases. For 160Dy and 162Dy the
difference is about 0.3MeV while for 168Er is about 0.65MeV . The states in
the second excited K = 0 band are well defined. The results suggest that it may
be interesting to see how the parameters change with changing the proton rather
than the neutron number.

4.1 B(E2) Strengths and Wave Functions

Very good agreement with experimentalB(E2) strengths was achieved for tran-
sitions in the ground-state band in both calculations. As an example, the intra-
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Table 3. SU(3) content of calculated four band-head states in 162Dy. The percentage dis-
tributions of each state across the (λ, μ) values are given in the second and third columns
for calculations in the two cases. All the basis states that contribute to more than 2% are
identified.

J# th1. th2. (λπ, μπ) (λν , μν ) (λ, μ)

01 59.3 64.0 ( 10, 4) ( 18, 4) ( 28, 8)
6.5 7.4 ( 10, 4) ( 18, 4) ( 30, 4)

20.1 7.3 ( 10, 4) ( 20, 0) ( 30, 4)
7.1 5.1 ( 12, 0) ( 18, 4) ( 30, 4)
2.7 3.1 ( 10, 4) ( 18, 4) ( 32, 0)
3.0 - ( 12, 0) ( 20, 0) ( 32, 0)

2γ 81.4 85.9 ( 10, 4) ( 18, 4) ( 28, 8)
5.2 4.9 ( 10, 4) ( 20, 0) ( 30, 4)
4.6 3.0 ( 12, 0) ( 18, 4) ( 30, 4)
4.5 2.6 ( 4, 10) ( 18, 4) ( 22, 14)

0a 91.8 63.4 ( 4, 10) ( 18, 4) ( 22, 14)
4.2 - ( 10, 4) ( 20, 0) ( 30, 4)
- 10.3 ( 10, 4) ( 18, 4) ( 28, 8)
- 20.2 ( 10, 4) ( 20, 0) ( 30, 4)
- 5.0 ( 12, 0) ( 18, 4) ( 30, 4)

0b 33.3 17.6 ( 10, 4) ( 18, 4) ( 28, 8)
47.0 40.2 ( 10, 4) ( 20, 0) ( 30, 4)
11.0 9.7 ( 12, 0) ( 20, 0) ( 32, 0)
5.9 27.0 ( 4, 10) ( 18, 4) ( 22, 14)
- 3.1 ( 12, 0) ( 18, 4) ( 30, 4)

band B(E2) transition strengths are given for 162Dy in Table 4. The intra-band
transition strengths for the other three bands, calculated in the two situations
with interaction strengths from Tables 1 and 2, are also given. Inter-band tran-
sition probabilities are given for a few cases where experimental numbers exist
(Table 6). In the present calculations, unlike in the 158Gd [8], the inter-band
B(E2) strengths are overestimated in both cases. It looks like the strength of
the single-particle energies does not affect the strength of the B(E2) transitions.
We will calculate these transitions for more nuclei to have a clear conclusion.

Note that the strengths of the B(E2) transition probabilities are consistent
across all four bands (Tables 4 and 5). In all tables the theoreticalB(E2) transi-
tion probabilities are given for the two sets of calculations corresponding to the
parameters from Tables 1 and 2. The differences in these values are very small,
at the third digit in the ground-state andKπ = 2+ bands, and at the second digit
in the other two bands.

When reduced one-body interaction strengths are used, the calculated low-
lying energy spectra are found to be in excellent agreement with experimental
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Table 4. Theoretical and experimental intra-band B(E2) transition strengths in 162Dy in
the Kπ = 0+

1 band, calculated in the two situations. The third and fourth columns refer
to calculations done using parameters from table 1 and 2, respectively.

B(E2; Ji → Jf ) (e2b2)
Ji → Jf Exp. Theory 1 Theory 2

01 → 21 5.134 ± 0.155 5.134 5.133
21 → 41 2.675 ± 0.102 2.635 2.634
41 → 61 2.236 ± 0.127 2.325 2.321
61 → 81 2.341 ± 0.115 2.201 2.193

data for all four bands of the four nuclei considered. Eigenstates are calculated
for angular momenta up to 8�. This leads to a prediction of some new levels in
the Kπ = 2+ band as well as in the first and second excitedKπ = 0+ bands. In
all cases these levels have strong intra-bandB(E2) transition probabilities.

As in previous works [3,4,8], although the basis is strongly truncated, being
built from about twenty SU(3) irreps, not all of these play an important role. All
the basis states that contribute to more than 2% are identified and presented in
Table 3 in 162Dy. In the same time, the SU(3) content stays almost the same for
all the states in a band. The SU(3) content of the wave functions calculated for
Dysprosium nuclei shows also that only few irreps are important. Furthermore
these irreps are the same in all the states within one band, and their percentages
vary slowly from the low angular momentum states towards the higher angular
momentum states. Details about the SU(3) content of the wave functions as a
function of angular momentum, will be published somewhere else.

The components of each state belonging to the ground-state band are about
60% [(10, 4)π × (18, 4)ν](28, 8), that is the leading irrep; 20% [(10, 4)π ×
(20, 0)ν](30, 4); 7% [(12, 0)π×(18, 4)ν](30, 4); and less from [(10, 4)π×(18, 4)ν]
coupled to (30, 4), [(10, 4)π × (18, 4)ν](32, 0), [(12, 0)π × (20, 0)ν ](32, 0) and
[(10, 4)π × (16, 5)ν](26, 9). These (30,4) and (32,0) representations contribute
less and less as the angular momentum increases within the band, and the last
one occurs only for angular momenta 6 and 8, and contributes less than 4%. In
the Kπ = 2+ band, the representations that contribute the most to the wave
functions are the same as in the ground-state band.

In the first excited K = 0+ band the dominant SU(3) irrep is (22,14), but
unlike for the Gadolinium nuclei, here the (22,14) irrep is the dominant irrep,
namely, 92% [(4, 10)π × (18, 4)ν] and 4% [(10, 4)π × (20, 0)ν](30, 4).

In the second excited 0+ band the dominant irrep is [(10, 4)π×(20, 0)ν](30,4),
with 47% in the 0+ state, and its strength is decreasing to only 4% in the 8+

state. In the 0+ state there are other three configurations with relatively strong
percentages, 34% [(10, 4)π × (18, 4)ν ](28, 8), 11% [(12, 0)π × (20, 0)ν ](32, 0)
and 6% [(4, 10)π × (18, 4)ν](22, 14), which are decreasing in strength as one
moves up to the 8+ state.
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Table 5. Calculated intra-band B(E2) transition strengths in 162Dy, in the K = 2,
K = 02, and K = 03 bands, calculated in the two situations. The third and fourth
columns refer to calculations done using parameters from Table 1 and 2, respectively.
The energies are labeled with the subindex γ for the K = 2 band, a, and b for the first
and second excited K = 0 bands.

B(E2;Ji → Jf ) (e2b2)
Band Ji → Jf Theory 1 Theory 2

K = 2 2γ → 3γ 2.480 2.513
2γ → 4γ 1.060 1.066
3γ → 4γ 1.630 1.655
4γ → 5γ 1.145 1.160
4γ → 6γ 1.625 1.632
5γ → 6γ 0.716 0.716
6γ → 7γ 0.607 0.615
6γ → 8γ 1.685 1.698

K = 02 0a → 2a 4.193 4.581
2a → 4a 2.272 2.435
4a → 6a 2.153 2.173
6a → 8a 2.175 2.030

K = 03 0b → 2b 3.517 3.780
26 → 4b 1.901 2.184
4b → 6b 2.017 2.076
6b → 8b 2.030 2.052

When the unscaled one-body interaction strengths are used, levels of the first
three energy bands are in good agreement with the experimental data. The fourth
band is approximately 0.5MeV higher in energy than observed. The percentage
distribution of these eigenstates across the (λ, μ) values changes very little for
the first three bands as the one-body interaction strength is scaled. These distri-
butions are given in the second and third columns of Table (3), corresponding
to the first and second set of parameters, for the band-head energies of the four

Table 6. Theoretical and experimental, inter-band B(E2) transition strengths in 162Dy,
in the two situations. The third and fourth columns refer to calculations done using
parameters from Table 1 and 2, respectively. The energies are labelled with the subindex
g for the ground-state and γ for the Kπ = 2+ bands.

B(E2; Ji → Jf ) (e2b2)
Ji → Jf Exp. Theory 1 Theory 2

2γ → 4g 0.000017 ± 0.000001 0.006489 0.007311
0g → 2γ 0.000632 ± 0.000042 0.2236 0.219120
2g → 2γ 0.000210 0.0758 0.08209
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bands considered. As the second excited Kπ = 0+ band goes up in energy, the
wavefunction content changes slightly and the first and second excitedKπ = 0+

bands switch order. Likewise, the M1 distribution looks ∼ 0.5MeV higher in
value.

The first excited 1+ state (calculated using the first set of parameters) lies
very close to the experimental one. Moreover this being the band-head of the
Kπ = 1+ band, the band is also well described.

4.2 M1 Transition Strengths

The basic structure of the strength distribution is determined by the SU(3)-
preserving symmetry part of the Hamiltonian,

HSU(3) = −1/2χQ ·Q+ asymC2 + aJ2 + bK2
J , (6)

which embodies strong selection rules [11], namely, there is no coupling be-
tween different SU(3) irreps. In this case there are at most four M1 transitions
between the 0+ ground-state and 1+ states. In this case, the calculated M1
strengths are concentrated in only two to four states, instead of beying frag-
mented as observed experimentally. By including SU(3)-symmetry breaking
terms in the Hamiltonian, namely, the one-body proton and neutron angular
momentum l2iπ,ν

and the two-body pairing terms Hπ,ν
P , this theory includes a

breakup of theM1 strength into relatively closely packed levels centered around
the sharp peaks of the pure-SU(3) limit of the theory. As a consequence of the
symmetry breaking we find a number of transitions close to the experimentally
observed ones. However, some of them have very small transition strengths.

The M1 transition strengths derived from the eigenvectors are given along
with the experimental results in the lower part of the Figure1. The centroids of
the experimental and theoretical M1 distributions lie at about the same energy
for calculations done with scaled single-particle strengths. By using the param-
eters from Table 2, the first 1+ energies are very close to the experimental val-
ues, and the calculated and experimentalM1 distributions span the same energy
range. The fragmentation of the M1 strength that is predicted (and observed)
is a result of symmetry breaking, which is generated by the single-particle and
pairing interactions, that are an integral part of the Hamiltonian given by eq. (1).
More details for all three nuclei will be published somewhere else.

The total M1 strength, which for the full Hamiltonian is lower than for its
pure SU(3) limit due to interference generated by the mixing, also shows rea-
sonable reproduction of the experimental data, in most cases slightly underesti-
mated. The calculated totalM1 strength is very close to the experimental one for
160Dy and 162Dy in both situations, with parameters from Table 1 and Table 2.
In the pure SU(3) limit it is almost 50% larger.

Overall, good agreement with experimental data was obtained for describing
the M1 distributions. The strong transitions occur in the same energy range
as the predicted 1+ states, the transitions are fragmented and clustered around
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strong peaks, and the total M1 strengths for this energy range agree within the
limitations of the model space.

In conclusion, very good description of the first 4 bands in the low-energy
spectra and electromagnetic transitions, B(E2) and B(M1) were obtained, in a
small truncated basis. The coefficients in the Hamiltonian vary smoothly from
one nucleus to another. The single-particle energies strengths do not seem to
affect the strength of the electromagnetic transition, but do affect the low-energy
spectrum. The model and procedure will be applied to more nuclei in the region,
to obtain a consistent procedure for fixing the interaction strengths.
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