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Abstract. Studies if isospin-asymmetric nuclear matter (IANM) are especially
important and timely as they support rich on-going and future experimental ef-
fort. In this talk, I will review the theoretical framework we adopt to calcu-
late the properties of IANM. I will then demonstrate the crucial role isovector
mesons play for the symmetry energy. The importance of a microscopic(rather
than phenomenological) approach is highlighted.

1 Introduction

Nuclear matter is a convenient theoretical laboratory for many-body theories. By
“nuclear matter” we mean an infinite system of nucleons actedon by their mu-
tual strong forces and no electromagnetic interactions. Nuclear matter is charac-
terized by its energy/particle as a function of density and other thermodynamic
quantities, as appropriate (e.g. temperature). Such relation is known as the nu-
clear matter equation of state (EoS). The translational invariance of the system
facilitates theoretical calculations. At the same time, adopting what is known
as “local density approximation”, one can use the EoS to obtain information on
finite systems. This procedure is applied, for instance, in Thomas-Fermi calcu-
lations within the liquid drop model, where an appropriate energy functional is
written in terms of the EoS [1–3].

Isospin-asymmetric nuclear matter (IANM) simulates the interior of a nu-
cleus with unequal densities of protons and neutrons. The equation of state of
(cold) IANM is then a function of density as well as the relative concentrations
of protons and neutrons.

The recent and fast-growing interest in IANM stems from its close connec-
tion to the physics of neutron-rich nuclei, or, more generally, isospin-asymmetric
nuclei, including the very “exotic” ones known as “halo” nuclei. At this time,
the boundaries of the nuclear chart are uncertain, with a fewhundreds stable nu-
clides known to exist and perhaps a few thousands believed toexist. The Facility
for Rare Isotope Beams (FRIB) has recently been approved fordesign and con-
struction at Michigan State University. The facility will deliver intense beams of
rare isotopes, the study of which can provide crucial information on short-lived
elements normally not found on earth. Thus, this new experimental program will
have widespread impact, ranging from the origin of elementsto the evolution of
the cosmos.
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It is estimated that the design and construction of FRIB willtake ten years.
In the meantime, systematic investigations to determine the properties of asym-
metric nuclear matter are proliferating at existing facilities. The equation of
state of IANM is also the crucial input for the structure equations of compact
stars, and thus establishes the connection between nuclearphysics and compact
astrophysical systems.

In this paper we will present and discuss our approach to the development
of the EoS of nuclear and neutron-rich matter. After a brief review of facts and
phenomenology about IANM, we will summarize our microscopic approach to
calculate the energy/particle in IANM.

Because of the fundamental importance of the symmetry energy in many sys-
tems/phenomena, it is of interest to identify the main contributions to its density
dependence. We will discuss the contribution of the isovector mesons (π, ρ, and
δ) to the symmetry energy and demonstrate the chief role of thepion. Note that
the isovector mesons carry the isospin dependence by contributing differently in
different partial waves, and that isospin dependence is thecrucial mechanism in
the physics of IANM. Hence, the relevance of a microscopic model that contains
all important couplings of mesons with nucleons.

2 Facts about Isospin-Asymmetric Nuclear Matter

Asymmetric nuclear matter can be characterized by the neutron density,ρn, and
the proton density,ρp, defined as the number of neutrons or protons per unit of
volume. In infinite matter, they are obtained by summing the neutron or proton
states per volume (up to their respective Fermi momenta,kn

F orkp
F ) and applying

the appropriate degeneracy factor. The result is

ρi =
(ki

F )3

3π2
, (1)

with i = n or p.
It is more convenient to refer to the total densityρ = ρn + ρp and the asym-

metry (or neutron excess) parameterα =
ρn−ρp

ρ . Clearly,α=0 corresponds to
symmetric matter andα=1 to neutron matter. In terms ofα and the average
Fermi momentum,kF , related to the total density in the usual way,

ρ =
2k3

F

3π2
, (2)

the neutron and proton Fermi momenta can be expressed as

kn
F = kF (1 + α)

1/3 (3)

and
kp

F = kF (1 − α)
1/3

, (4)

respectively.
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Expanding the energy/particle in IANM with respect to the asymmetry pa-
rameter yields

e(ρ, α) = e0(ρ) +
1

2

(∂2e(ρ, α)

∂α2

)

α=0

α2 + O(α4) , (5)

where the first term is the energy/particle in symmetric matter and the coefficient
of the quadratic term is identified with the symmetry energy,esym. In the Bethe-
Weizs̈acker formula for the nuclear binding energy, it representsthe amount of
binding a nucleus has to lose when the numbers of protons and neutrons are
unequal. The symmetry energy is also closely related to the neutronβ-decay in
dense matter, whose threshold depends on the proton fraction. A typical value
for esym at nuclear matter density (ρ0) is 30 MeV, with theoretical predictions
spreading approximately between 26 and 35 MeV.

To a very good degree of approximation, the energy/particlein IANM can
be written as

e(ρ, α) ≈ e0(ρ) + esym(ρ)α2. (6)

The effect of a term of fourth order in the asymmetry parameter (O(α4)) on
the bulk properties of neutron stars is very small, althoughit may impact the
proton fraction at high density. More generally, non-quadratic terms are usually
associated with isovector pairing, which is a surface effect and thus vanishes in
infinite matter [4].

Equation (6) displays a convenient separation between the symmetric and
aymmetric parts of the EoS, which facilitates the identification of observables
that may be sensitive, for instance, mainly to the symmetry energy. For a recent
review and analysis of available constraints, see Ref. [5].Typically, constraints
are extracted from heavy-ion collision simulations based on transport models.
Isospin diffusion and the ratio of neutron and proton spectra are among the ob-
servables used in these analyses.

These investigations appear to agree reasonably well on thefollowing para-
metrization of the symmetry energy:

esym(ρ) = 12.5MeV
( ρ

ρ0

)2/3

+ 17.5MeV
( ρ

ρ0

)γi

, (7)

whereρ0 is the saturation density. The first term is the kinetic contribution and
γi (the exponent appearing in the potential energy part) is found to be between
0.4 and 1.0. Recent measurements of elliptic flows in197Au + 197Au reactions
at GSI at 400-800 MeV/nucleon favor a potential energy term with γi equal to
0.9± 0.4.

Isospin-sensitive observables can also be identified amongthe properties of
normal nuclei. The neutron skin of neutron-rich nuclei is a powerful isovector
observable, being sensitive to the slope of the symmetry energy, which deter-
mines to which extent neutrons will tend to spread outwards to form the skin.

Parity-violating electron scattering experiments are nowa realistic option
to determine neutron distributions with unprecedented accuracy. The neutron
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radius of208Pb is expected to be measured with a precision of 3% thanks to
the electroweak program at the Jefferson Laboratory, the PREX experiment in
particular, just recently completed at Jefferson Lab. Thislevel of accuracy could
not be achieved with hadronic scattering. Parity-violating electron scattering
at low momentum transfer is especially suitable to probe neutron densities, as
theZ0 boson couples primarily to neutrons. With the success of this program,
reliable empirical information on neutron skins will be able to provide, in turn,
much neededindependent constraint on the density dependence of the symmetry
energy.

A measure of the density dependence of the symmetry energy isthe symme-
try pressure, defined as

L = 3ρ0

(∂esym(ρ)

∂ρ

)

ρ0

≈ 3ρ0

(∂en.m.(ρ)

∂ρ

)

ρ0

, (8)

where we have used Eq. (6) withα=1. Thus,L is sensitive to the gradient of
the energy per particle in neutron matter (en.m.). As to be expected on physical
grounds, the neutron skin, given by

S =
√

〈r2
n〉 −

√

〈r2
p〉 , (9)

is highly sensitive to the same pressure gradient.
Values ofL are reported to range from 50 to 100 MeV as seen, for instance,

through the numerous parametrizations of Skyrme interactions (see Ref. [6] and
references therein), all chosen to fit the binding energies and the charge radii of
a large number of nuclei. Heavy-ion data impose boundaries for L at 85 ± 25
MeV, with more stringent constraints being presently extracted. At this time
constraints appear to favor lower values of the symmetry pressure. In fact, a
range ofL values given by52.7 ± 22.5 MeV has emerged from recent analyses
of global optical potentials [7].

Another important quantity which emerges from studies of IANM is the
symmetry potential. Its definition stems from the observation that the single-
particle potentials experienced by the proton and the neutron in IANM, Un/p,
are different from each other and satisfy the approximate relation

Un/p(k, ρ, α) ≈ Un/p(k, ρ, α = 0) ± Usym(k, ρ) α , (10)

where the +(-) sign refers to neutrons (protons), and

Usym =
Un − Up

2α
. (11)

Thus, one can expect isospin splitting of the single-particle potentials to be ef-
fective in separating the collision dynamics of neutrons and protons. Further-
more,Usym, being proportional to the gradient between the single-neutron and
the single-proton potentials, should be comparable with the Lane potential [8],
namely the isovector part of the nuclear optical potential.Optical potential anal-
yses can then help constrain this quantity and, in turn, the symmetry energy.
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3 Brief Review of the Theoretical Approach

As stated above, the starting point of our many-body calculation is a realistic
nucleon-nucleon (NN) interaction which is then applied in the nuclear medium
without any additional free parameters. Thus the first question to be confronted
concerns the choice of the “best” NN interaction. After the development of QCD
and the understanding of its symmetries, chiral effective theories [9,10] were de-
veloped as a way to respect the symmetries of QCD while keeping the degrees of
freedom (nucleons and pions) typical of low-energy nuclearphysics. However,
chiral perturbation theory (ChPT) has definite limitationsas far as the range of
allowed momenta is concerned. For the purpose of applications in dense mat-
ter, where higher and higher momenta become involved with increasing Fermi
momentum, NN potentials based on ChPT are unsuitable.

Relativistic meson theory is an appropriate framework to deal with the high
momenta encountered in dense matter. In particular, the one-boson-exchange
(OBE) model has proven very successful in describing NN datain free space
and has a good theoretical foundation. Among the many available OBE po-
tentials, some being part of the “high-precision generation” [11, 12], we seek a
momentum-space potential developed within a relativisticscattering equation,
such as the one obtained through the Thompson [13] three-dimensional reduc-
tion of the Bethe-Salpeter equation [14]. Furthermore, we require a potential
that uses the pseudovector coupling for the interaction of nucleons with pseu-
doscalar mesons. With these constraints in mind, as well as the requirement of
a good description of the NN data, Bonn B [15] is a reasonable choice. The
mesons included are the pseudoscalarπ andη, the scalarσ andδ, and the vector
ρ andω.

As our many-body framework, we choose the Dirac-Brueckner-Hartree-Fock
approach. The main strength of the DBHF approach is its inherent ability to ac-
count for important three-body forces through its density dependence. In the
DBHF approach, one describes the positive energy solutionsof the Dirac equa-
tion in the medium as

u∗(p, λ) =

(

E∗

p + m∗

2m∗

)1/2
(

1

σ·~p
E∗

p+m∗

)

χλ, (12)

where the effective mass,m∗, is defined asm∗ = m+US , with US an attractive
scalar potential. It can be shown that the description of a single-nucleon via
Eq. (12) effectively accounts for an important class of three-body forces, namely
those generated by virtual excitation of nucleon-antinucleon pairs. The result
is a repulsive effect on the energy/particle in symmetric nuclear matter which
depends on the density approximately as

∆E ∝

(

ρ

ρ0

)8/3

, (13)

83



F. Sammarruca

and provides a crucial saturation mechanism missing in conventional Brueckner-
Hartree-Fock (BHF) theory. (Alternatively, explicit three-body forces are used
along with the BHF method in order to achieve a similar result.) Brown et al.
showed that the bulk of the desired effect can be obtained as alowest order
(in p2/m) relativistic correction to the single-particle propagation [16]. See
Ref. [17] for a detailed presentation of the formalism adopted in our DBHF
method.

4 Contribution of Isovector Mesons to the Equation of State and
the Symmetry Energy

Before proceeding to discuss the symmetry energy, we show, for Bonn B, how
the various mesons contribute to the energy of symmetric nuclear matter, Fig-
ure 1(a), and neutron matter, Figure 1(b). We also note the clear impact of the
pion on the saturation density of SNM, demonstrating the remarkable saturating
effect generated by the tensor force.
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Figure 1. Contribution from the various mesons to the equation of state of symmetric
matter (a) and neutron matter (b).
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Table 1. The difference between the potential energy contributions (in MeV) to NM and
SNM from isovector mesons.

Potential U
π
NM − U

π
SNM U

ρ
NM − U

ρ
SNM U

δ
NM − U

δ
SNM

Bonn B 20.78 -5.90 -6.78
Bonn A 15.98 -4.68 -2.80
Bonn C 24.42 -5.48 -10.24

In Table 1, we show the difference between the potential energy contribu-
tions to NM and SNM from the isovector mesons, as an estimate of the effect of
each meson on the potential energy part of the symmetry energy. (The density
is taken to be equal to 0.185 fm−1.) Clearly, in a microscopic, meson-theoretic
approach the impact of the pion on the symmetry energy is the largest. We find
this to be a point of considerable interest, since mean field theories are generally
pionless. This is because the bulk of the attraction-repulsion balance needed for
a realistic description of nuclear matter can be technically obtained fromσ and
ω only, an observation that is at the very foundation of Walecka models such
as QHD-I [21]. However, in any fundamental theory of nuclearforces, the pion
is the most important ingredient. Chiral symmetry is spontaneously broken in
low-energy QCD and the pion emerges as the Goldstone boson ofthis symme-
try breaking [10]. Moreover, NN scattering data cannot be described without
the pion, which is also absolutely crucial for the two-nucleon bound state, the
deuteron.

When moving to nuclear matter (and regardless the possibility of obtaining
realistic values of its bulk properties, including the symmetry energy, with a pi-
onless theory), this conceptual problem is not removed.Isospin dependence is
carried by the isovector mesons: Because of their isovector nature, these mesons
contribute differently in different partial waves thus giving rise to isospin depen-
dence. (This is not the case with isoscalar mesons, which tend to contribute
similarly in all partial waves.) Thus, an important aspect of the physics is miss-
ing in a discussion of isospin dependence that does not include the pion. Also,
conclusions concerning the effect of other mesons (particularly ρ andδ) may be
distorted due to the absence of the pion. This may include, for instance, obser-
vations concerning isospin-sensitive quantities such as the neutron-proton mass
splitting in neutron-rich matter.

As mentioned earlier, investigations ofρ andδ contributions to the potential
symmetry energy have been reported, such as the one in Refs. [22, 23]. In Fig-
ure 6-1 of Ref. [22], for instance, those contributions are shown to be very large
in size (about -40 MeV and 50 MeV at saturation density forδ andρ, respec-
tively). Thus, the interplay betweenρ andδ is described as the equivalent, in the
isovector channel, of theσ-ω interplay in the isoscalar channel [23].

The dramatic differences between those and our present observations origi-
nate from several sources, which include: The absence of thepion; the nature of
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Figure 2. The symmetry energy as predicted with Bonn A, B, and C.

theρ coupling; the fact that our meson contributions, when iterated, are reduced
by the effect of the Pauli projector. As mentioned previously, the role of theδ
is important although subtle, and it is found in its different contributions to I=1
and I=0 partial waves, especially the S-waves.

In Figure 2 we show the density dependence of the symmetry energy with
Bonn A, B, and C. The potential model dependence comes almostentirely from
differences among predictions of the SNM energy. With the three sets of predic-
tions, we mean to estimate the uncertainty to be expected when using different
parametrizations for the isovector mesons, while respecting the free-space NN
data.

Figure 3 displays the momentum dependence of the single-proton and single-
nucleon potentials in IANM, as predicted by the three potentials. Differences are
small, at most 10% at the lowest momenta. We recall that the gradient between
the potentials shown in Figure 3, closely related to the isovector optical potential,
is the crucial mechanism that separates proton and neutron dynamics in IANM.

5 Conclusions

We reviewed our microscopic approach to the calculation of isospin-asymmetric
nuclear matter, with particular attention to the symmetry energy. We examined
the effect of the isovector mesons on the difference betweenthe potential en-
ergies of pure neutron matter and symmetric matter. Our findings are easily
understood in terms of the contributions of each meson to theappropriate com-
ponent of the nuclear force and the isospin dependence naturally generated by
isovector mesons.

We found that the pion gives the largest contribution to thisdifference. The
contribution of the pion is often ovelooked, possibly because this meson is miss-
ing from some mean field models, which are popular among usersof equations
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Figure 3. Momentum dependence of the single-nucleon potentials in IANM,Ui (i=p,n),
predicted with Bonn A, B, and C. The total density is equal to 0.185 fm−3 and the isospin
asymmetry parameter is 0.4. The momentum is given in units of the Fermi momentum,
which is equal to 1.4 fm−1.

of state. It is our opinion that conclusions regarding the interplay ofρ andδ in
phenomenological models must be taken with caution.

Finally, we commented on fundamental differences between our approach
and the one of mean field models, particularly pionless QHD theories. First,
these differences are of conceptual relevance, since free-space NN scattering and
bound state are, essentially, pion physics. Furthermore, they can impact in a con-
siderable way conclusions with regard to isospin dependentsystems/phenomena.
In order to have a fundamental basis, a microscopic theory ofthe nuclear many-
body problem has to start from the bare NN interaction with all its ingredients.

87



F. Sammarruca

Acknowledgments

Support from the U.S. Department of Energy under Grant No. DE-FG02-03ER41270
is acknowledged.

References

[1] K. Oyamatsu, I. Tanihata, Y. Sugahara, K. Sumiyoshi, and H. Toki, Nucl. Phys.
A634 (1998) 3.

[2] R.J. Furnstahl,Nucl. Phys. A706 (2002) 85.
[3] F. Sammarruca and P. Liu,Phys. Rev. C 79 (2009) 057301.
[4] Andrew W. Steiner,Phys. Rev. C 74 (2006) 045808, and references therein.
[5] M.B. Tsanget al., Phys. Rev. C 86 (2012) 015803.
[6] B.A. Li and L.W. Chen,Phys. Rev. C 72 (2005) 064611.
[7] Chang Xu, Bao-An Li, and Lie-Wen Chen,Phys. Rev. C 82 (2010) 054607.
[8] A.M. Lane,Nucl. Phys. 35 (1962) 676.
[9] S. Weinberg,Physica 96A (1979) 327;Phys. Lett. B251 (1990) 288.

[10] R. Machleidt and D.R. Entem,Phys. Rep. 503 (2011) 1.
[11] R. Machleidt,Phys. Rev. C 63 (2001) 024001.
[12] V.G.J. Stokset al., Phys. Rev. C 49 (1994) 2950.
[13] R.H. Thompson,Phys. Rev. D 1 (1970) 110.
[14] E.E. Salpeter and H.A. Bethe,Phys. Rev. 84 (1951) 1232.
[15] R. Machleidt,Adv. Nucl. Phys. 19 (1989) 189.
[16] G.E. Brownet al., Comments Nucl. Part. Phys. 17 (1987) 39.
[17] F. Sammarruca,Int. J. Mod. Phys. E 19 (2010) 1259.
[18] J.J. Sakurai,Currents and Mesons, University of Chicago Press, Chicago (1969).
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