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Abstract. Studies if isospin-asymmetric nuclear matter (IANM) are especially
important and timely as they support rich on-going and future expetahef:
fort. In this talk, | will review the theoretical framework we adopt to calcu-
late the properties of IANM. | will then demonstrate the crucial role isowecto
mesons play for the symmetry energy. The importance of a micros(aiter
than phenomenological) approach is highlighted.

1 Introduction

Nuclear matter is a convenient theoretical laboratory fanyabody theories. By
“nuclear matter” we mean an infinite system of nucleons aotebly their mu-
tual strong forces and no electromagnetic interactionlédm matter is charac-
terized by its energy/particle as a function of density atietothermodynamic
guantities, as appropriate (e.g. temperature). SuchHaelest known as the nu-
clear matter equation of state (EoS). The translationariance of the system
facilitates theoretical calculations. At the same timepmihg what is known
as “local density approximation”, one can use the EoS toioliéormation on
finite systems. This procedure is applied, for instance harfias-Fermi calcu-
lations within the liquid drop model, where an appropriatergy functional is
written in terms of the EoS [1-3].

Isospin-asymmetric nuclear matter (IANM) simulates thieiiior of a nu-
cleus with unequal densities of protons and neutrons. That&m of state of
(cold) IANM is then a function of density as well as the ralatconcentrations
of protons and neutrons.

The recent and fast-growing interest in IANM stems from ltse connec-
tion to the physics of neutron-rich nuclei, or, more gergraospin-asymmetric
nuclei, including the very “exotic” ones known as “halo” teic At this time,
the boundaries of the nuclear chart are uncertain, with anfavdreds stable nu-
clides known to exist and perhaps a few thousands believexst The Facility
for Rare Isotope Beams (FRIB) has recently been approvedefsign and con-
struction at Michigan State University. The facility wiletiver intense beams of
rare isotopes, the study of which can provide crucial infation on short-lived
elements normally not found on earth. Thus, this new expantai program will
have widespread impact, ranging from the origin of elemamntle evolution of
the cosmos.

79



F. Sammarruca

It is estimated that the design and construction of FRIB talte ten years.
In the meantime, systematic investigations to determiagtbperties of asym-
metric nuclear matter are proliferating at existing fdigi. The equation of
state of IANM is also the crucial input for the structure etipres of compact
stars, and thus establishes the connection between nptigsics and compact
astrophysical systems.

In this paper we will present and discuss our approach to ¢heldpment
of the EoS of nuclear and neutron-rich matter. After a bréefew of facts and
phenomenology about IANM, we will summarize our microscogpproach to
calculate the energy/particle in IANM.

Because of the fundamental importance of the symmetry girergany sys-
tems/phenomena, it is of interest to identify the main dbations to its density
dependence. We will discuss the contribution of the isaatiesons+, p, and
0) to the symmetry energy and demonstrate the chief role gbithre Note that
the isovector mesons carry the isospin dependence by lootiig differently in
different partial waves, and that isospin dependence isringal mechanism in
the physics of IANM. Hence, the relevance of a microscopidetthat contains
all important couplings of mesons with nucleons.

2 Facts about Isospin-Asymmetric Nuclear Matter

Asymmetric nuclear matter can be characterized by the oiedtensity,,,, and
the proton densityp,, defined as the number of neutrons or protons per unit of
volume. In infinite matter, they are obtained by summing teetron or proton
states per volume (up to their respective Fermi moméritar k7.) and applying
the appropriate degeneracy factor. The result is

(k)

s @

with i = n or p.
It is more convenient to refer to the total density= p,, + p, and the asym-
metry (or neutron excess) parameter= %. Clearly, «=0 corresponds to

symmetric matter andi=1 to neutron matter. In terms ef and the average
Fermi momentumk g, related to the total density in the usual way,

2k,
_ 2'F 2
— ()
the neutron and proton Fermi momenta can be expressed as
kp = k(1 +a)"? 3)
and s
Ky = kp(1—a)'/?, @)
respectively.
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Expanding the energy/particle in IANM with respect to thgrametry pa-
rameter yields

2
e(p, ) = eolp) + %(%)a:ooﬁ +0(at) (5)
where the first term is the energy/particle in symmetric evathd the coefficient
of the quadratic term is identified with the symmetry eneegy,,. In the Bethe-
Weizsacker formula for the nuclear binding energy, it represémsamount of
binding a nucleus has to lose when the numbers of protons engloms are
unequal. The symmetry energy is also closely related to ¢érons-decay in
dense matter, whose threshold depends on the proton fractidypical value
for e,y at nuclear matter density() is 30 MeV, with theoretical predictions
spreading approximately between 26 and 35 MeV.

To a very good degree of approximation, the energy/particlANM can
be written as

e(p, @) = eo(p) + eSym(p)a2- (6)
The effect of a term of fourth order in the asymmetry param@®¥a*)) on
the bulk properties of neutron stars is very small, althoitghay impact the
proton fraction at high density. More generally, non-qagidrterms are usually
associated with isovector pairing, which is a surface effi@d thus vanishes in
infinite matter [4].

Equation (6) displays a convenient separation betweenytmengtric and
aymmetric parts of the EoS, which facilitates the identtfara of observables
that may be sensitive, for instance, mainly to the symmetergy. For a recent
review and analysis of available constraints, see Ref.Tgpically, constraints
are extracted from heavy-ion collision simulations basedransport models.
Isospin diffusion and the ratio of neutron and proton s@eate among the ob-
servables used in these analyses.

These investigations appear to agree reasonably well dioltbeing para-
metrization of the symmetry energy:

p\2/3 P\
esym(p) = 12.5 Mev(—) +17.5 Mev(—) : @)
Po Po
wherepy is the saturation density. The first term is the kinetic dbotion and
~; (the exponent appearing in the potential energy part) inddo be between
0.4 and 1.0. Recent measurements of elliptic flow®Tiu + 197 Au reactions
at GSI at 400-800 MeV/nucleon favor a potential energy teiith w; equal to
0.9+ 0.4.

Isospin-sensitive observables can also be identified arttengroperties of
normal nuclei. The neutron skin of neutron-rich nuclei isoavprful isovector
observable, being sensitive to the slope of the symmetryggnevhich deter-
mines to which extent neutrons will tend to spread outwavsderm the skin.

Parity-violating electron scattering experiments are raovealistic option
to determine neutron distributions with unprecedentediia@@y. The neutron

81



F. Sammarruca

radius of2°2Pb is expected to be measured with a precision of 3% thanks to
the electroweak program at the Jefferson Laboratory, tHeXP&periment in
particular, just recently completed at Jefferson Lab. el of accuracy could
not be achieved with hadronic scattering. Parity-violgtélectron scattering
at low momentum transfer is especially suitable to probdroawdensities, as
the Z° boson couples primarily to neutrons. With the success sfggthbgram,
reliable empirical information on neutron skins will be albd provide, in turn,
much needethdependent constraint on the density dependence of the symmetry
energy.

A measure of the density dependence of the symmetry enetigy &ymme-
try pressure, defined as

Oeg M(p) aewm-(p)
L=3 YR ~ 3 —_— 8
po(TH) man(TE) ©)
where we have used Eq. (6) wittr1. Thus,L is sensitive to the gradient of
the energy per particle in neutron matter (,,.). As to be expected on physical
grounds, the neutron skin, given by

S =) =) )

is highly sensitive to the same pressure gradient.

Values ofL are reported to range from 50 to 100 MeV as seen, for instance,
through the numerous parametrizations of Skyrme interast{see Ref. [6] and
references therein), all chosen to fit the binding energiestlae charge radii of
a large number of nuclei. Heavy-ion data impose boundade$ fat 85 + 25
MeV, with more stringent constraints being presently ested. At this time
constraints appear to favor lower values of the symmetrgqume. In fact, a
range ofL values given by2.7 + 22.5 MeV has emerged from recent analyses
of global optical potentials [7].

Another important quantity which emerges from studies oNM is the
symmetry potential. Its definition stems from the obseorathat the single-
particle potentials experienced by the proton and the aeutr IANM, U, /,,,
are different from each other and satisfy the approximdégion

Un/p(kapa Oé) ~ Un/p(ka P = 0) + Usym(kvp) a, (10)
where the +(-) sign refers to neutrons (protons), and
_ Un — Up
Usgm = =5, 1)

Thus, one can expect isospin splitting of the single-plarpotentials to be ef-
fective in separating the collision dynamics of neutrond protons. Further-
more,Us,., being proportional to the gradient between the singleroauand
the single-proton potentials, should be comparable wighLidine potential [8],
namely the isovector part of the nuclear optical poten@gdtical potential anal-
yses can then help constrain this quantity and, in turn,yhergetry energy.
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3 Brief Review of the Theoretical Approach

As stated above, the starting point of our many-body cafimrias a realistic

nucleon-nucleon (NN) interaction which is then appliedha huclear medium
without any additional free parameters. Thus the first qoieso be confronted

concerns the choice of the “best” NN interaction. After teeelopment of QCD

and the understanding of its symmetries, chiral effectiesties [9,10] were de-
veloped as a way to respect the symmetries of QCD while kgepadegrees of
freedom (nucleons and pions) typical of low-energy nucj#grsics. However,

chiral perturbation theory (ChPT) has definite limitati@ssfar as the range of
allowed momenta is concerned. For the purpose of applitaiio dense mat-
ter, where higher and higher momenta become involved witteasing Fermi

momentum, NN potentials based on ChPT are unsuitable.

Relativistic meson theory is an appropriate framework tal eéth the high
momenta encountered in dense matter. In particular, thebosen-exchange
(OBE) model has proven very successful in describing NN dafeee space
and has a good theoretical foundation. Among the many dlail@BE po-
tentials, some being part of the “high-precision generét[al, 12], we seek a
momentum-space potential developed within a relativistiattering equation,
such as the one obtained through the Thompson [13] threerdilonal reduc-
tion of the Bethe-Salpeter equation [14]. Furthermore, aguire a potential
that uses the pseudovector coupling for the interactionucfaons with pseu-
doscalar mesons. With these constraints in mind, as welleasequirement of
a good description of the NN data, Bonn B [15] is a reasonabtéce. The
mesons included are the pseudoscalandn, the scalar andd, and the vector
p andw.

As our many-body framework, we choose the Dirac-Brueckfemtree-Fock
approach. The main strength of the DBHF approach is its etteability to ac-
count for important three-body forces through its densipehdence. In the
DBHF approach, one describes the positive energy solutibtie Dirac equa-
tion in the medium as

E* m* 1/2 1
u*(p,mz(L) ( vt >xh (12)

2m* Ef4+m*

where the effective massy*, is defined asn* = m + Ug, with Ug an attractive

scalar potential. It can be shown that the description ofhglsinucleon via

Eq. (12) effectively accounts for an important class ofékbedy forces, namely
those generated by virtual excitation of nucleon-antieol pairs. The result
is a repulsive effect on the energy/particle in symmetriclear matter which

depends on the density approximately as

8/3
AE x (ﬁ> , (13)
Po
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and provides a crucial saturation mechanism missing ineaional Brueckner-
Hartree-Fock (BHF) theory. (Alternatively, explicit thedoody forces are used
along with the BHF method in order to achieve a similar resurown et al.
showed that the bulk of the desired effect can be obtained lawest order
(in p?/m) relativistic correction to the single-particle propdgat[16]. See
Ref. [17] for a detailed presentation of the formalism addpin our DBHF
method.

4 Contribution of Isovector Mesons to the Equation of State and
the Symmetry Energy

Before proceeding to discuss the symmetry energy, we sluoviddnn B, how
the various mesons contribute to the energy of symmetriteanenatter, Fig-
ure 1(a), and neutron matter, Figure 1(b). We also note #er @npact of the
pion on the saturation density of SNM, demonstrating thearkable saturating
effect generated by the tensor force.
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Figure 1. Contribution from the various mesons to the equation of statenmhsyric
matter @) and neutron mattebj.
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Table 1. The difference between the potential energy contributions () kéeNM and
SNM from isovector mesons.

Potential Uk — Uy Ubns — Ubnur U — Uy
Bonn B 20.78 -5.90 -6.78
Bonn A 15.98 -4.68 -2.80
Bonn C 24.42 -5.48 -10.24

In Table 1, we show the difference between the potentialggneontribu-
tions to NM and SNM from the isovector mesons, as an estinfateeffect of
each meson on the potential energy part of the symmetry gnéfFbge density
is taken to be equal to 0.185 frh.) Clearly, in a microscopic, meson-theoretic
approach the impact of the pion on the symmetry energy isattgest. We find
this to be a point of considerable interest, since mean firldries are generally
pionless. This is because the bulk of the attraction-répulsalance needed for
a realistic description of nuclear matter can be techniaatained froms and
w only, an observation that is at the very foundation of Wadentodels such
as QHD-I [21]. However, in any fundamental theory of nucliegices, the pion
is the most important ingredient. Chiral symmetry is spoataisly broken in
low-energy QCD and the pion emerges as the Goldstone bodbissfymme-
try breaking [10]. Moreover, NN scattering data cannot becdbed without
the pion, which is also absolutely crucial for the two-necidbound state, the
deuteron.

When moving to nuclear matter (and regardless the posgibflibbtaining
realistic values of its bulk properties, including the syetirg energy, with a pi-
onless theory), this conceptual problem is not removeospin dependence is
carried by the isovector mesons. Because of their isovector nature, these mesons
contribute differently in different partial waves thus giving rise to isospin depen-
dence. (This is not the case with isoscalar mesons, which tend tdribote
similarly in all partial waves.) Thus, an important aspefdhe physics is miss-
ing in a discussion of isospin dependence that does notdadhe pion. Also,
conclusions concerning the effect of other mesons (pdatilguo andd) may be
distorted due to the absence of the pion. This may includdn&tance, obser-
vations concerning isospin-sensitive quantities sucth@séutron-proton mass
splitting in neutron-rich matter.

As mentioned earlier, investigations @andd contributions to the potential
symmetry energy have been reported, such as the one in R2f&3]. In Fig-
ure 6-1 of Ref. [22], for instance, those contributions dreven to be very large
in size (about -40 MeV and 50 MeV at saturation densityd@nd p, respec-
tively). Thus, the interplay betweenandd is described as the equivalent, in the
isovector channel, of the-w interplay in the isoscalar channel [23].

The dramatic differences between those and our presentvalisas origi-
nate from several sources, which include: The absence gidme the nature of
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Figure 2. The symmetry energy as predicted with Bonn A, B, and C.

the p coupling; the fact that our meson contributions, when tesiaare reduced
by the effect of the Pauli projector. As mentioned previgutiie role of the)
is important although subtle, and it is found in its differenntributions to 1=1
and =0 partial waves, especially the S-waves.

In Figure 2 we show the density dependence of the symmetnggnégth
Bonn A, B, and C. The potential model dependence comes akntistly from
differences among predictions of the SNM energy. With tmedlsets of predic-
tions, we mean to estimate the uncertainty to be expected wsiag different
parametrizations for the isovector mesons, while respgdtie free-space NN
data.

Figure 3 displays the momentum dependence of the singltetpamd single-
nucleon potentials in IANM, as predicted by the three pasdsit Differences are
small, at most 10% at the lowest momenta. We recall that theignt between
the potentials shown in Figure 3, closely related to theastar optical potential,
is the crucial mechanism that separates proton and newramdcs in IANM.

5 Conclusions

We reviewed our microscopic approach to the calculatiosa$pin-asymmetric
nuclear matter, with particular attention to the symmetrgrgy. We examined
the effect of the isovector mesons on the difference betweempotential en-
ergies of pure neutron matter and symmetric matter. Ourrfggliare easily
understood in terms of the contributions of each meson tapipeopriate com-
ponent of the nuclear force and the isospin dependenceatigitgenerated by
isovector mesons.

We found that the pion gives the largest contribution to tliference. The
contribution of the pion is often ovelooked, possibly bessthis meson is miss-
ing from some mean field models, which are popular among wserguations
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Figure 3. Momentum dependence of the single-nucleon potentials in IANNI=p,n),
predicted with Bonn A, B, and C. The total density is equal to 0.185%and the isospin
asymmetry parameter is 0.4. The momentum is given in units of the Feomiemtum,
which is equal to 1.4 fm®.

of state. It is our opinion that conclusions regarding therplay ofp andé in
phenomenological models must be taken with caution.

Finally, we commented on fundamental differences betwagrapproach
and the one of mean field models, particularly pionless QHEdties. First,
these differences are of conceptual relevance, sincesfraee NN scattering and
bound state are, essentially, pion physics. Furthermiogg,dan impact in a con-
siderable way conclusions with regard to isospin deperslestéems/phenomena.
In order to have a fundamental basis, a microscopic theottysofiuclear many-
body problem has to start from the bare NN interaction witlit@ingredients.
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