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Abstract. A collective model of nuclear quadrupole-octupole vibrations and
rotations, originally restricted to a coherent interplay between quadrupole and
octupole modes, is now developed for application beyond this restriction. The
eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in
the basis of the analytic solution obtained in the case of the coherent-mode as-
sumption. Within this scheme the yrast alternating-parity band is constructed by
the lowest eigenvalues having the appropriate parity at given angular momen-
tum. Additionally we include the calculation of transition probabilities which
are fitted with the energies simultaneously. As a result we obtain a unique set
of parameters. The obtained model parameters unambiguously determine the
shape of the quadrupole-octupole potential. From the resulting wave functions
quadrupole deformation expectation values are calculated which are found to be
in agreement with experimental values.

1 Introduction

Collective quadrupole and octupole deformations in atomic nuclei, providing
vibrational, rotational and transitional structures of the spectra, lead to especially
interesting spectra with parity effects in the regions where these deformations
coexist. In [1] Minkov et al. applied a coherent quadrupole-octupole motion
(CQOM) model to several even-even rare-earth nuclei. This model can be solved
analytically if one imposes equal frequencies for the quadrupole and octupole
motion and the solution is shortly presented below.

The purpose of the present work, in continuation of a previous paper [2], is
to include transition probabilities into the model description. This allows for the
first time a unique determination of the model parameters which are adjusted so
as to reproduce the experimental values in the best way possible. As a conse-
quence, the model potentials and the resulting wave functions are now obtained
unambiguously and even allow a prediction of the quadrupole deformation by
calculating the β2 expectation value.
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2 Two-dimensional Coherent Quadrupole-Octupole Model

2.1 General Hamiltonian

The starting point is a vibration-rotation Hamiltonian formulated in the collec-
tive axial quadrupole and octupole deformation variables β2 and β3 [1]
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where X(I) = 1
2 [d0 + I(I + 1)] for even-even nuclei. B2 and B3 are mass

parameters, C2 and C3 are stiffness parameters, d2 and d3 are moment of inertia
parameters and d0 determines the potential core at angular momentum I = 0.

2.2 Coherent solution

The transition to ellipsoidal coordinates given by
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and the imposition of the relations B := d
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B3 and C := d

d2
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d
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C3, where d = (d2 + d3)/2, allows one to obtain the energy spectrum in the

following closed formula [1]
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where ω =
√
C/B and b = 2B/�2d are considered as fitting parameters. The

model wave function has the form
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where DI
M 0(θ) is the Wigner rotation function and

Φπ
nkI(η, φ) = ψI

nk(η)ϕπ
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is the quadrupole-octupole vibration function. Here
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is the “radial” part of Φ(η, φ) with c =
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as well as
ϕ+
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2/π cos(kφ) , k = 1, 3, 5, . . . (7)
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ϕ−
k (φ) =

√
2/π sin(kφ) , k = 2, 4, 6, . . . (8)

for the “angular” wave functions with either positive or negative parity.
For the quantum numbers n = 0, 1, 2, . . . and k = 1, 2, 3, . . . one chooses

the lowest possible values to describe the yrast spectra. This means one takes al-
ways n = 0 and k = 1 for even angular momenta (positive parity) and k = 2 for
odd angular momenta (negative parity). In the case when non-yrast alternating-
parity bands are described one needs to consider higher k-values [10].

2.3 Numerical diagonalization

The details about the diagonalization procedure can be found in [2]. The CQOM
basis functions Φ(η, φ) have the advantage to automatically consider the bound-
ary condition of the model, namely that the wave function must vanish along
the β3-axis. An energy cutoff for the number of basis functions is applied and
we consider approximately the 30 lowest lying states for the diagonalization. It
is checked that this is enough to provide convergence of the results, i.e. the re-
sults do no longer change if more basis states are added. Furthermore the basis
is optimized as explained in [2]. For the integration of the matrix elements we
apply a formula which allows one to obtain the numerical values of the definite
integrals quickly by means of a generalized hypergeometric function 3F2. Then
the eigenvalues and eigenvectors of the Hamiltonian matrix are calculated and
we construct the model spectrum as described in [2].

2.4 Theory of transition operators

The basic theory about electromagnetic transitions in the coherent case can be
found in [1]. Since the consideration is restricted to axial deformations only,
the projectionK of the collective angular momentum on the principal symmetry
axis is taken as zero.

For a given model state Ψπ
nkIM0(η, φ), a given multipolarity λ as well as

initial quantum numbers n = ni, k = ki, I = Ii, and final quantum numbers
n = nf , k = kf , I = If , we have
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The operators for the electric E1, E2 and E3 transitions are given by

Mμ(Eλ) =

√
2λ+ 1

4π(4− 3δλ,1)
Q̂λ0D

λ
μ0, λ = 1, 2, 3, μ = 0,±1, . . . ,±λ ,

(10)
where

Q̂10 = M1β2β3 Q̂λ0 = Mλβλ, λ = 2, 3 . (11)
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For the Q̂-operators we use first order expressions in β2 and β3 for the E2 and
E3 case while for E1 we use the second order expression.

The Mλ factors are electric charge factors which we take as [4]

Mλ =
3√

(2λ+ 1)π
ZeRλ

0 , λ = 2, 3 , (12)

where R0 = r0A
1/3 with r0 ≈ 1.2 fm is the nuclear radius, Z is the proton

number and e is the electric charge of the proton. The charge factor M1 is taken
according to the droplet model concept [5–7] in the form [9]

M1 =
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where the quantities J and Q are related to the volume and surface symmetry
energy, respectively. A reasonable choice for them should lie in the regions [8,9]

25 ≤ J ≤ 44 MeV 17 ≤ Q ≤ 70 MeV . (14)

For practical calculations we choose fixed average values J = 35 MeV andQ =
45 MeV. We also replace the proton charge e by an effective charge e1eff, which
can have a value different from one and which enters in the fitting procedure as
an adjustable parameter.

It was found however that the operators from equation (11) are not sufficient
for the CQOM model and have to be modified as follows. In continuation to the
above mentioned transition theory, we can write the Q̂-operators, Eq. (11), in
ellipsoidal coordinates as

Q̂10 = M1pqη
2 cosφ sinφ (15)

Q̂20 = M2pη cosφ (16)

Q̂30 = M3qη sinφ . (17)

The operators (15)-(17) correspond to a fixed nuclear shape situation with fixed
values of β2 and β3. In case of the CQOM the density distribution can have many
maxima. This phenomenon can be interpreted as a kind of “overtones” related
to the coherent collective oscillations of the system. The original operators (15)-
(17) cannot take into account multiple maxima in the collective states. As a
consequence it was found that using these original operators the B(E3) transition
probabilities are vanishing if the difference in the k numbers of the two used
wave functions is larger than one.

As explained in [10], this limitation is removed by the introduction of the
following replacements:

cosφ −→ A20(φ) ≡
∞∑

k=1

a
(k)
20 cos(kφ) (18)

sinφ −→ A30(φ) ≡
∞∑

k=1

a
(k)
30 sin(kφ) . (19)
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If one choses a(k) = 1/k then the sums are convergent and the limit is known in
analytical form.
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where the floor function cuts away the digits after the comma and gives the
largest previous integer. The angular part of the second order operator can then
be generalized by replacing the factors of the product with their generalizations

cosφ sinφ−→A10(φ)≡A20(φ)A30(φ)=
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cos(mφ)
m

sin(nφ)
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If one reduces the sums to only the first summand, the original operators are
reobtained. We now redefine the transition operators (15)-(17) as

Q̂10(η, φ) = M1pqη
2A10(φ) (23)

Q̂20(η, φ) = M2pηA20(φ) (24)

Q̂30(η, φ) = M3qηA30(φ) . (25)

If one carries out the integration over the rotational part involving the Wigner
D-functions, one is left with
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where the square of a Clebsch-Gordan coefficient appears and Rλ involves inte-
grals of η and φ and is given by
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We can advantageously use this coherent theory from [10] to calculate the transi-
tion probabilities in the non-coherent case. Since the wave function is expanded
with respect to the basis functions and for them the transition theory is known,
we obtain for the non-coherent matrix elements the following double sum in-
cluding known expansion coefficients:

R̃λ(Ii → If ) =
∑
n′k′

∑
n′′k′′

c
If

n′′k′′c
Ii

n′k′Rλ(n′ k′ Ii → n′′ k′′ If ) . (28)

In order to calculate the non-coherent transitions one simply has to replace Rλ

with R̃λ in the above expression (26).
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We take into account transition probabilities related to the yrast band. It
has been found that this is very important and necessary in order to obtain a set
of parameters which is uniquely determined. The reason for this is that one of
the fitting parameters, c, only appears in the wave functions. Its value could be
arbitrarily chosen in the previous approach without transition probabilities and
was chosen in such a way as to approximately reproduce parameter values which
lie in a physically reasonable region.

3 Application to Some Nuclei

Once the diagonalizations have been performed for all angular momenta, one
obtains an yrast spectrum and is able to define a function σRMS which gives the
root mean square deviation from the experimental levels. The transition prob-
abilities are calculated from the above theory and we construct an overall root
mean square deviation function including both energies and transitions. The
transitions are included with weight factors providing the same order of magni-
tude for the fitting procedure.

Then the model parameters B2, B3, C2, C3, d2, d3, d0 and e1eff can be ad-
justed so as to provide the best description of experimental data. As a first guess
for the minimization we take the parameter values obtained from the CQOM
model.

The model approach was applied to describe the yrast alternating parity spec-
tra and yrast transitions of the nuclei 152,154Sm, 154,156Gd, 100Mo and 236U. The
resulting optimal parameters are given in Table 1. It should be kept in mind that
the fitting algorithm finds a local minimum and it eventually could be that there
is another minimum which provides an even better description. We also cal-
culate the corresponding wave functions for zero angular momentum and the
resulting quadrupole deformation expectation values given by

〈β2〉 =
∫ ∞

−∞

∫ ∞

0

β2Φ(β2, β3)2dβ2dβ3 . (29)

Table 1. Parameters of the fits obtained for 152,154Sm, 154,156Gd, 100Mo and 236U. The
parameters B2, B3 are given in units of �2/MeV, C2 and C3 are given in units of MeV,
d2 and d3 are given in �2·MeV−1, d0 is given in �2 and e1eff is in units of elementary
charge.

Nucleus B2 B3 C2 C3 d2 d3 d0 e1eff
152Sm 26.0 334.9 68.8 368.5 836.9 3886.7 24.3 1.43
154Sm 2.9 339.0 111.2 2443.0 330.4 12264.9 325.8 1.64
154Gd 7.5 172.5 85.8 482.7 486.7 4190.8 70.8 1.88
156Gd 6.2 337.9 193.3 1257.6 954.7 7395.0 153.9 0.95
100Mo 0.437 16.9 11379.9 87.6 682.2 577.5 18.9 0.56
236U 186.7 185.6 44.9 619.5 549.8 11475.9 258.2 0.27
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The wave functions are plotted in Figures 1-6 and the obtained quadrupole de-
formations are given in Table 2.

Table 2. Quadrupole deformations obtained from the wave functions for 152,154Sm,
154,156Gd, 100Mo and 236U. The experimental values are taken from RIPL-2 [3].

Nucleus β
exp
2 βtheo

2 Nucleus β
exp
2 βtheo

2 Nucleus β
exp
2 βtheo

2

152Sm 0.3064 0.191 154Gd 0.3120 0.250 100Mo 0.2309 0.135
154Sm 0.3410 0.318 156Gd 0.3378 0.217 236U 0.2821 0.272

Figure 1. Wave function for 152Sm at angular momentum I = 0.

Figure 2. Wave function for 154Sm at angular momentum I = 0.
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Figure 3. Wave function for 154Gd at angular momentum I = 0.

Figure 4. Wave function for 156Gd at angular momentum I = 0.

4 Discussion and Outlook

As already shown in [2] the numerical solution of the CQOM model leads to a
better description of the yrast spectra. We expect that in this previous approach
where only energies were used for the fitting procedure one obtains a better root
mean square (RMS) value for the energies than in the present work. This is
due to the fact that here we also simultaneously fit transition probabilities in
addition to the energies. For two nuclei this is checked in Table 3. While we
see our expectation confirmed in the case of 152Sm, we surprisingly notice that
in case of 154Gd the RMS value for the energies is even better than the value of
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Figure 5. Wave function for 100Mo at angular momentum I = 0.

Figure 6. Wave function for 236U at angular momentum I = 0.

Table 3. Root mean square deviations for the energies for two nuclei which were con-
sidered in the CQOM model [10] (left column), in the previous paper [2] about energy
levels only in the non-coherent case (middle column) as well as in the present approach
(right column).

Nucleus σCQOM [keV] σen [keV] σen+trans [keV]
152Sm 48.7 23.3 47.5
154Gd 74.0 47.0 44.8
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Table 4. Theoretical and experimental values of B(E1), B(E2) and B(E3) transition proba-
bilities in Weisskopf units (W.u.) for the alternating-parity spectrum of 152Sm. Notations:
g (ground-state band) and n1 (first negative-parity band). The data is taken from [11] ex-
cept for the E3-transition, which is taken from [12]. Only transitions involving the yrast
band are considered. The uncertainties (in parentheses) refer to the last significant digits
in the experimental data.

Mult Transition Exp [W.u.] Theo [W.u.] Weight

E2 2g → 0g 144(3) 142 10
E2 4g → 2g 209(3) 212 10
E2 6g → 4g 245(5) 250 10
E2 8g → 6g 285(14) 284 10
E2 10g → 8g 320(3) 318 10
E1 1n1 → 0g 0.0042(4) 0.0042 100000
E1 1n1 → 2g 0.0077(7) 0.0088 100000
E1 3n1 → 2g 0.0081(16) 0.0057 100000
E1 3n1 → 4g 0.0082(16) 0.0083 100000
E3 3n1 → 0g 14(2) 20 10

the previous approach. This is an indication that the parameters of the previous
approach are not optimal and a better parameter set is found in the present work.

In order to get an idea about the quality of the fitted transitions Table 4 pro-
vides some data from the experiment as well as theoretical values. As one can
see, the agreement is quite good and most often in agreement with the error bars.

One main result is that with the inclusion of transition probabilities into the
fitting procedure we obtain unique parameters which additionally lie in a physi-
cally reasonable region.

Another impressive result which can be seen from Table 2 is that – without
fitting these quantities – the quadrupole deformation expectation values are ob-
tained reasonably and they reproduce the behaviour given by the experiment for
the different nuclei, especially the least deformed nucleus in the experiment is
also least deformed in the theory and the same holds for the most deformed nu-
cleus. The octupole deformation (not shown here) can be obtained in a similar
way by localizing the maximum of the wave function in the quadrant with both
positive β2 and β3 for angular momentum I = 1.

Also the shapes from the wave functions seem to change according to the
region of nuclei. We observe that the wave functions for the rare-earth nuclei
152,154Sm and 154,156Gd look quite similar while the one for 100Mo looks very
different. The shape of the wave function for 236U is similar to the rare-earth
case but still different since it looks more heart-shaped.

Concerning future improvements, one could look not only for yrast states but
also for higher lying states for which experimental data also exists. However,
first test calculations have shown that the overall description of the levels in
terms of the RMS deviation becomes much worse in this case. This is due to
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the fact that we do not have good quantum numbers n and k in the non-coherent
case and therefore cannot reproduce the “jumping” over quantum numbers as it
is done in the analytic coherent case [10].

Secondly, one could extend the formalism also to odd-A nuclei. Preliminary
work in this direction has already been done.
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