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Abstract. We discuss an extension of Time Dependent Hartree Fock (TDHF)
to include dissipative effects. We propose a simple model to test a stochastic ex-
tension of TDHF. Applications to nuclear and molecular problems are outlined.

Mean field constitutes a sound starting basis for the description of numerous
dynamical situations in a variety of systems ranging from nuclei [1] to molec-
ular systems and clusters [2]. Mean field has been indeed developed in these
fields and raised to a high level of sophistication. In the nuclear context it is
well known under the acronym Hartree Fock and the time dependent extension
thereof (TDHF). Nuclear TDHF calculations have, to a large extent, been de-
veloped around effective density dependent functionals, typically Skyrme inter-
actions [1]. In clusters and molecules the leading effective theory is Density
Functional Theory [3] and its Time Dependent extension TDDFT, which again
relies on a density dependent effective Hamiltonian [2]. Both TDHF and stan-
dard TDDFT are thus using single particle density as a key input and thus bear
strong formal resemblances. These resemblances actually reflect physical simi-
larities in several observables [4]. Let us cite as a typical example here collective
motion, in particular the Giant Dipole Resonance in nuclei and its counterpart
the Mie plasmon (or more generally speaking the optical response) in metal
clusters [2].

Although mean field constitutes a robust and sound basis for the descrip-
tion of many dynamical situations, it is well known that it for example fails to
properly address dynamics beyond the linear regime. A way out is to include
dissipative effects which mock up dynamical correlations not accounted for at
mere mean field level. In spite of long standing efforts [5], the inclusion of dis-
sipative effects in a quantum mean field remains to a large extent an open issue.
Several semi classical approximations were developed, especially in the nuclear
case over the last decades [4, 6], and more recently in the case of clusters [7],
but these approaches are limited to cases where a (semi) classical approximation
is justified. This may be partially true in the case of heavy ion collisions in the
Fermi energy domain [4, 8] but certainly hard to envision for most molecular
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situations. There is thus a recent renewed interest in this question, especially in
the TDDFT community, the move being triggered by the accumulation of exper-
imental evidence for dissipative effects in many situations, in particular in the
case of irradiation of clusters and molecules by intense laser beams [9].

In the following, we propose a stochastic extension of TDHF which should
allow to envision on short term the inclusion of dissipative effects in a quantal
framework, and applications to realistic test cases both in the nuclear and the
molecular contexts. The paper is organized as follows. After a brief reminder
of the original theory ,we outline a simpler form allowing test cases in model
systems and give the outline of next steps to be performed along that line.

1 Stochastic TDHF

1.1 General outline

Although the question of extending TDHF to account for dissipation (via ”two
body collisions”) was attacked several decades ago [5] no convincing approach
was finally developed in the fully quantal context. The 1980’s saw in turn, the
development of semi classical approximations, leading to approaches based on
kinetic theory [6]. The next move was to include quantum features in the dy-
namics. The most convincing approach is probably the method proposed in the
early 1990’s and known as FMD (Fermionic Molecular Dynamics) or AMD
(antisymmetrized Molecular Dynamics) in which a degraded version of TDHF
is complemented by a classical collision term, in the spirit of kinetic theory [10].
Still such approaches heavily rely on semi classics and further developments
have shown the necessity of including more and more quantal features [11].

An alternative, both to kinetic equations and to the molecular dynamics
methods, was proposed in the early 1990’s but never made practical, mostly for
computational reasons. The Stochastic TDHF approach [12] aims at providing a
theoretical framework for stochastic extensions of TDHF, but without recurring
to the kinetic equation stage. STDHF is based on two basic assumptions :

• a perturbative treatment of the residual interaction V on a well chosen time
interval τ, around a TDHF trajectory; this delivers correlated states built
around the TDHF one.

• projection of the correlated states on an ensemble of TDHF determinants.

A key ingredient of STDHF, as of most stochastic approaches, is the typical
time scale (here τ) on which correlations are building up and loss of coherence
becomes possible, justifying a stochastic treatment. The hypothesis of a pertur-
bative treatment on a time interval τ, on the basis of TDHF, now imposes that

τcoll � τ � τm.f. (1)

While dynamics has to remain dominated by mean-field (τm.f.), the residual in-
teraction should be efficient enough to allow a sufficient number of transitions
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between states of the system (τcoll) to justify a statistical hypothesis. In the
framework of STDHF, the notation τcoll, which refers to the duration of an el-
emetary collision, does not exist directly but allows to grasp the essence of the
process.

With the assumption Eq.(1) one can propagate an initially uncorrelated state
DN = |N〉〈N | (Slater determinant) between an instant 0 and τ, within account-
ing for the residual interaction. It leads to express the density matrix of this,
now correlated, state DN , as a statistical superposition of uncorrelated states
DM (TDHF states):

DN (τ) = (1−
∑

M �=N

WMN )DN (τ) +
∑

M �=N

WMNDM (τ) (2)

The weights WMN , which are the key ingredients, can then be expressed from
Fermi golden rule [12] (on the time interval t = 0→ t = τ ):

WMN =
2π
�
|〈N |V̂N |N〉|2δ(EM − EN )τ (3)

where V̂N is the residual interaction for state |N〉 and EN(resp.M) the total en-
ergy of state N (resp. M ). The matrix element is evaluated at time t = 0. One
furthermore expects that the dominant terms in the above expansion are the ones
corresponding to 2 particles−2 holes (2ph) excitations with respect to |N〉.

The elementary propagation Eq.(2) then allows to build an ensemble of stochas-
tic trajectories⎧⎨⎩ DN

τ→ {DM ,WMN}
DM0

τ→ {DL,WM0L}
...

⎫⎬⎭
N=1,...

(4)

Practically speaking, starting from a pure TDHF state DN one chooses, after
the first STDHF time step (by sampling according to the WM weights) a new
pure TDHF state DM0 . The process is then iterated starting with DM0 which
progressively builds up one trajectory. And an ensemble of trajectories built this
way constitutes the STDHF ensemble representation of the whole dynamical
process.

1.2 Critical discussion

There are several interests to this approach, once it is made practical. Let us
briefly mention the most salient ones.

• STDHF is a fully quantal approach, at least as much as TDHF is quantal;

• it relies on a full TDHF formulation, thus without recurring to approx-
imate TDHF states such as those used in elaborate molecular dynamics
methods;
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• it avoids the difficult question of treating a collision term directly, which
by construction is an involved high dimensional integral, even in the clas-
sical case;

• it goes beyond kinetic theory as it also includes stochastic effects. It can
actually be shown that it may be reduced to a stochastic extension of ki-
netic equations [12].

Of course STDHF has to be made practical. That is certainly a difficult ques-
tion and several problems need to be overcome. Let us briefly mention a few of
them. The major difficulty is of computational nature. Direct simulations of
ensembles of TDHF states remain quite demanding. The nuclear case, though,
is certainly simpler as typical realistic dynamical situations may be considered
on rather short time scales (in natural time scales), namely involving only some
hundreds or thousands of time steps, no more. This is typically the case of heavy
ion collisions in the Fermi energy domain [8]. The situation is much less forgiv-
ing in the electronic case where realistic scenarios involve typically 2 or more
orders of magnitude longer times (again in natural time scales) than nuclear
ones, thus making the simulations of realistic ensemble basically unreachable.
Even if we thus can use direct simulations of STDHF in the nuclear case we
shall have to develop a simplified version thereof for application to the elec-
tronic case. In the mean time it will certainly be highly interesting to consider
model systems as will be discussed in the following. Finally one should also
keep in mind the intrinsic limitations connected to the validity of the whole ap-
proach, essentially what concerns the identification of τ and the approximations
on which time dependent perturbation theory implicitly relies. In the following
we shall nevertheless consider that these latter aspects are under control.

2 Towards Testing STDHF in a Simple Model

2.1 STDHF in a 2ph picture

We denote by |N〉 a typical Slater state following original notation of STDHF
derivation. The label N should not be confused with the number of particles
present in the system, which we denote byN . The |N〉 sSater state thus reads

|N〉 = A1...N
N∏

i=1

[|φi,N 〉] (5)

introducing the antisymmetrization operatorA1...N . Note that we keep the index
N on each single particle (s.p.) state |φi,N 〉 to specificy the link to the Slater state
|N〉.

We assume that we have propagated for a while a time dependent Slater state
|N〉 = |N(t)〉 according to the Hamiltonian ĥN (t). The point is to compute the
transition matrix elements 〈M |V̂N |N〉where we further impose |M〉 to be a 2ph
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state built on the (time dependent) |N〉 state, i.e.

|M〉 = â†αp′ â
†
αp
âαh

âαh′ |N〉 (6)

where p, p′ belong to “particle” states and h, h′ belong to “hole” states. The
formally simplest choice to take the hole states from those s.p. states occupied in
|N〉 and the particle states from the unoccupied ones. One then has for energies

EN = 〈N |ĥN |N〉 (7)

and
EM = 〈M |ĥN |M〉 ≈ EN + εp + εp′ − εh − εh′ (8)

where the εi are the single particle energies associated to |N〉 state.
The two-body interaction V̂N can be expanded as

V̂N =
1
2

∑
i1<i2,j1<j2

(αi1αi2 |VN |α̃j1αj2)â
†
αi1
â†αi2

âαj2
âαj1

(9)

where |α̃j1αj2) is an anti-symmetrized state of two independent Fermions. This
then yields

〈M |V̂N |N〉 =
1
2

∑
i1<i2j1<j2

(αi1αi2 |VN |α̃j1αj2)〈M |â†αi1
â†αi2

âαj2
âαj1
|N〉 .

(10)
With |M〉 given as in Eq. (6) the above summation reduces to

〈M |V̂N |N〉 = (pp′|VN |hh′)〈M |â†pâ
†
p′ âh′ âh|N〉 = (pp′|VN |hh′) (11)

with

(pp′|VN |hh′) =
∫

dxdx′φ∗p(x)φ
∗
p′ (x′)VN (x, x′)φh(x)φh′ (x′) (12)

In the basic transition element of STDHF, we have to evaluate

|〈M |V̂N|N〉|2δ(EM − EN ) ≈ |〈M |V̂N|N〉|2δ(εp + εp′ − εh − εh′) (13)

and this implies to give a practical definition to the Dirac δ-function. In a space
of discrete spectra, we employ a finite-width δ function

δ(E) −→ δw(E) =
1

ω
√
π

exp
(
−E

2

w2

)
. (14)

One possible motivation for finite width is that one has used a finite sampling
time τ = Δt associated with a width w = Δt−1. This is however conceptually
not easy to assess. It is more plausible to relate the width to the uncertainty in
the s.p. energies as will be discussed later.
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2.2 A 1D example

For simplicity, we start with considering a 1D system. The associated mean field
Hamiltonian is denoted ĥN which we shall choose as (in x representation)

ĥN = − Δ
2m

+ Vext(x) + κρ(x)α (15)

where κ and α are parameters mocking up the self consistent component of the
mean field and Vext(x) is a well chosen one-body external potential, typically
a Woods-Saxon as a starter. This model (15) is close to a typical situation in
molecular or cluster physics where the ionic background provides a spatially
fixed external potential. An alternative simulating self-bound system, as drops
of liquid 3He or nuclei, is a Skyrme-like Hamiltonian

ĥN = − Δ
2m
− κ1ρ(x)α + κ2ρ(x)β . (16)

In any case, we choose as a residual interaction for two-body collisions a simple
zero-range force

VN (x, x′) = δ(x− x′)V0 . (17)

This choice differs from the TDDFT residual interaction according to the mean
fields (15) or (16). It is legitimate and reasonable that the collision term need not
to use the same residual interaction as TDDFT or RPA (which is δĥN/δρ). Note
also that in actual computations, we shall complement ĥN by an external per-
turbing field Vperturb driving the system out of equilibrium (laser, initial boost,
. . . ).

2.3 Some practical details

Practically one is thus left to evaluate possible 2ph transitions as built on |N〉.
There is a huge space of choices for the 2ph states. Possible options are:

1. One propagates more s.p. states than initially occupied in |N〉 and con-
siders 2ph states within this basis of propagated s.p. states. This is topo-
logically simple as these states are immediately ortho-normal. But then
the s.p. energies have some uncertainty Δεi because the propagated s.p.
states are not necessarily eigenstates of ĥN . One may minimize the uncer-
tainties by diagonalizing the occupied states with respect to ĥN and also
the unoccupied ones (but not across particle to hole states).

2. One defines 2ph states with respect to the instantaneous Hamiltonian ĥN .
A problem here is that the occupied states in |N〉 are not the eigenstates of
ĥN . Thus one has to orthogonalize the eigenstates on the given occupied
states of |N〉.

3. One optimizes new 2ph states from a maximum jump probability princi-
ple.
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The most efficient choice is probably point 3. But it would still have to be
worked out and will certainly be formally involved. The most straightforward
and plausible is strategy 1. We will follow this line in the first studies.

The problem here is that the s.p. energies εi have some uncertainty Δεi.
We turn it into an advantage by choosing the width of the energy conserving δ
function in the rate (13) from s.p. variances Δεi. An important quantity here is
provided by the total variance

ΔhN
2 = 〈N |

(
ĥN − 〈N |ĥN |N〉

)2
|N〉 =

N∑
i=1

Δεi
2 (18)

where the summation runs over occupied s.p. states (εi = 〈φi,N |ĥN |φi,N 〉).
The average s.p. variance is then Δε2 = ΔhN

2/N . There are now at least two
options for choosing the width

w = 2ΔhN/N or (19)

w =
[
Δεp

2 + Δεp′2 + Δεh
2 + Δεh′2

]1/2
. (20)

The form (20) employs only the variances of the s.p. states actually encountered
in the jump. Thus each term in the rate Eq. (13) is associated to a different
width. Much simpler is the form Eq. (19) which uses an average width for each
term. In a first round, we should choose the simplest version Eq. (19).

There remains to add a few words of caution concerning energy and mo-
mentum preservation during such simulations. There is presently no control
over momentum conservation in the rate (13) and energy conservation is not
perfect either due to the finite energy width in the rates. This has to be tested
numerically and we have to see whether fluctuations and/or drift of momentum
and energy remains acceptable. If not, we can easily augment the scheme by
projectors on momentum and energy.

Another open question is also the capability of a 1D model to provide suffi-
cient 2ph phase space to justify statistical arguments. Again, we have to test this
practically. If we find the phase space insufficient, we may extend the studies a
multi-channel 1D model.

3 Next steps

The next steps will consist in pursuing the studies on the model 1D test case
and, in parallel, explore more realistic 3D nuclear cases, again within restricting
excitations to 2ph as outlined above. A key aspect is certainly the exploration
of the 2ph density of state which will control the capability of the system to ex-
plore transitions. This density of state will of course depend on the actual phys-
ical situation and correlatively on the perturbing potential used to simulate that,
thus including implicitly the amplitude of the perturbation. Indeed too small
a perturbation will not allow the full development of a sufficiently large num-
ber of transitions between states, thus inhibiting a statistical treatment. In turn,
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too large an excitation may impose, in order to preserve the perturbative nature
of the description, to reduce considerably the time step on which the perturba-
tive analysis has to be performed. It is hard to predict the behavior of realistic
systems in such respect and the next urgent step is thus to start computational
explorations. Work along that line is already in progress.
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