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Abstract. An approximate method to quantify the mass dependence of the
number of two-nucleon (2N) short-range correlations (SRC) in nuclei is sug-
gested. The proposed method relies on the concept of the “local nuclear charac-
ter” of the SRC. We quantify the SRC and its mass dependence by computing
the number of independent-particle model (IPM) nucleon pairs in a zero relative
orbital momentum state. We find that the relative probability per nucleon for 2N
SRC follows a power law as a function of the mass number A. The predictions
are connected to measurements which provide access to the mass dependence of
SRC. First, the ratio of the inclusive inelastic electron scattering cross sections
of nuclei to 2H at large values of the Bjorken variable. Second, the EMC effect,
for which we find a linear relationship between its magnitude and the predicted
number of SRC-prone pairs.

1 Introduction

In a mean-field model fluctuations are completely ignored. The SRC induce
spatio-temporal fluctuations from the mean-field predictions. Realistic nuclear
wave functions reflect the coexistence of single-nucleon (mean-field) structures
and cluster structures. The clusters account for beyond mean-field behavior. As
the nucleon-nucleon interaction is short ranged, the clusters attributed to SRC
are predominantly of the two-nucleon (2N) type. Given an arbitrary nucleus
A(N, Z) we address the issue of quantifying the number of SRC-prone pairs.
Our suggested method, albeit approximate, is robust, model independent, and is
applicable to any nucleus from He to Pb. Our goal is to come with a systematic
insight into the mass and isospin dependence of the SRC without combining
results from various types of calculations.

2 Quantifying Nuclear Correlations

2.1 Mean-field approximation and beyond

A time-honored method to account for the effect of correlations in classical and
quantum systems is the introduction of correlation functions. Realistic nuclear
wave functions | ¥ 4) can be computed after applying a many-body correlation
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operator to a Slater determinant | W)
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The nuclear correlation operator Ghasa complicated spin, spin-orbit and isospin
dependence but is dominated by the central, tensor and spin correlations [1]

A
g =~ 3{ 11 (1 — 9e(rig) + fer (1i5)SisTi - 7
i<j=1
+  fsr(riy)di - G5 T 73)] ) 2
where g., fir, fsr are the central, tensor, and spin-isospin correlation function,
S the symmetrization operator, .S;; the tensor operator, and 75; = r’\_/” The

operator S;; admixes relative two-nucleon states of different orbital angular mo-
mentum, is operative on triplet spin states only, and conserves the total angular
momentum of the pair.

The effect of the correlation functions on the momentum distributions can

be roughly estimated from their squared Fourier transforms. The relative mo-
By — k2

mentum (k:12 = ) dependence of squared Fourier transform of the tensor

correlation | fi, (k‘lg) |2 is very similar to the squared D-wave component of
the deuteron wave function | ¥p (k12) |? [2]. The effect of the tensor correla-
tion function is largest for moderate relative momenta (100 < k12 < 500 MeV).
For very large k12, the g. is the dominant contribution. Whereas a large model
dependence for the g. is observed, the f;; seems to be much better constrained.

After introducing the wave functions of Eq. (1), the one-body momentum
distributions can be written as

P, (E) - pO (12)+Pf” (E) . 3)

The Pl(o) is the mean-field part and is fully determined by the Slater determi-
nant | WATF ). The SRC generate a fat momentum tail to the P; (E) The high

momentum tails to ngl) (k) = [ koPl(l)(E) have a very similar momentum

dependence for all nuclei, including the deuteron, which alludes to an univer-
sal character of SRC [3]. It has been theoretically predicted [4-6] and experi-
mentally confirmed in semi-exclusive A(e, e’p) measurements [7] that the major
fraction of the high-momentum tail to n( ) (k) strength is contained in very spe-
cific parts of the single-nucleon removal energy-momentum phase space, namely
those where the ejected nucleon is part of a pair with high relative and small c.m.
momentum, the so-called ridge in the spectral function [5].
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2.2 Quantifying two-nucleon correlations

Theoretical 160(6, e’pn) calculations [5,8,9] have predicted that the tensor parts
of the SRC are responsible for the fact that the correlated (e, e’pn) strength is
typically a factor of 10 bigger than the correlated (e, €’pp) strength. Calculations
indicated that the tensor correlations are strongest for pn pairs with “deuteron-
like” |l12 = 0,5 = 1) relative states [8,9]. Recently, this dominance of the pn
correlations over pp and nn ones has been experimentally confirmed [10, 11].
Accordingly, a reasonable estimate of the amount of correlated nucleon pairs
in A(N, Z) is provided by the number of pairs in a [ = 0 state. In order
to determine that number for a given set of single-particle states, one needs a

coordinate transformation from (7, 72 ) to (Flg = Fl\;;Z , Ris = %) For a
harmonic oscillator (HO) Hamiltonian this transformation can be done with the
aid of Moshinsky brackets [12]. After introducing the spin and isospin degrees-
of-freedom, in a HO basis a normalized and antisymmetrized (na) two-nucleon
state reads («; = (n;l;7:t;))

(1—"Pi2) . S,
ooy JM) = ——=r— |y (T1) a2 (72) ; JM
larag; JM),,, 2(1+5al(12)|1(1) 2 (72) )

= Z<n12112N12A12LML, SMsTMr | arog; Jard)
X

X Hnmhz (T12), N12A12 (-%2)} LMy, SMS,TMT> ;

4)
where y sums over the appropriate quantum numbers (112, l12, Ni2, A12,
L, My, S, Mg, T, Mr), (... | ...} is the transformation bracket as defined

in Ref. [2] and P12 the interchange operator for the spatial, spin, and isospin
coordinate. Starting from the Eq. (4) one can compute in a HO single-particle
basis how much a pair wave function with quantum numbers

‘ [7112112 (712) , N12A12 (-%2)} LMp,SMs, TMT> )

contributes to the sum-rule

Z Z Z na <a1a2§JM |0¢1042;JM>na

IM o) <Nt oy <al?
7]\](]\;71) N1 :N2 =N
=1 45H Ni=N=p . (©)

NZ Ny # N,

This can also be done for any other non-relativistic basis |nljm) of single-
particle states in a two-step procedure. First, a 2N state can be expressed in
a HO basis. Second, the Eq. (4) can be used to determine the weight of the pair
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Figure 1. The computed values for ﬁNpm and ﬁan(S) which represent the
predicted fraction of the pairs which are prone to SRC. The results are obtained for HO

single-particle wave functions with iw (MeV) = 45A73 —25A7 % and for the target nu-
clei “He, ?Be, 12C, 160, 27 Al, 4°Ca, *8Ca, °°Fe, 3Cu, 1°® Ag, and *°” Au. The computed
values for nn correlations are similar to the pp results and can and be found in Ref. [2].

wave functions of Eq. (5). The number of (n12 = 0, l12 = 0) pairs, which are
stated to be a reasonable estimate for the number of the SRC-prone is given by
the expression,

Npp(A,Z) =" > 3 naonon; JM| P20 000 TM),,
IM ay <ol az<al

(N
where P%122=0112=0 is a projection operator for 2N relative states with n12 = 0,
li2 = 0. A similar expression to Eq. (7) holds for the nn pairs. For the pn
pairs it is important to add the projection operator 7?;; to discriminate between
the triplet and singlet spin states. In Figure 1 we display some computed results
for the Ny, and Ny, (s) for 11 nuclei covering the full mass table. Naively one
could expect that the number of correlated pn (pp) pairs in a nuclei scales like

NZ (@) ~ A?. From Figure 1 it is clear that the mass dependence of

the number of SRC pairs approximately follows a power law. The pn (n12 = 0,
li2 = 0, S = 1) SRC-prone pairs scale as ~ A!-35+0-03,

The results for IN,,,, which are similar to N, can be found in Ref. [2]. In
Ref. [2] a method to estimate the number of correlated 3V clusters is developed.
We find that there is (as for 2N correlations) a power law relation between the
mass A and the number of correlated ppn triples.

3 Results

3.1 Two-body correlations

Following the experimental observation [13—15] that the ratio of the inclusive
electron scattering cross sections from a target nucleus A and from the deuteron
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o (z5,Q%)

ol (xp, Q%) "
scales for 1.5 < x5 < 2 and moderate 92, it has been suggested [13] to param-
eterize the ratio 0 /o” in the following form

()

A 2
as (A/D) = %% (15<z5<2) . )

In a simplified reaction-model picture, which ignores for example the effect
of c.m. motion of pairs in finite nuclei, the quantity 4as (A/D) can be con-
nected with the number of correlated pairs in the nucleus A [14]. Assuming that
all pn pairs contribute one would expect that for the relative amount of correlated
two-nucleon clusters ag (4/D) ~ A. We suggest in Refs. [2, 17] that the corre-
lated pn pairs contributing to the a2 (A/ D), are predominantly (7' = 0,5 = 1)
pairs and that as(A/D) is proportional to the per nucleon probability for a pn
SRC relative to the deuterium. Thereby, the per nucleon probability for a pn
SRC relative to the deuterium can be defined as

2 an(S:l)(Av Z) 2

Apart from corrections stemming from final-state interactions, a correction
factor which accounts for the c.m. motion of the correlated pairs blurs the con-
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Figure 2. The computed values for the a2(A/D) for various nuclei. The data are from
Refs. [14-16]. The shaded region is the prediction after correcting the computed values
of a2(A/D) for the c.m. motion of the pair. The correction factor are determined by
linear interpolation of the factors listed in Table 1 of Ref. [2]. The width of the shaded
area is determined by the estimated errors of the c.m. correction factors.
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nection between the measured as(A/D) coefficients and the number of corre-
lated pairs. We have opted to correct the predicted as coefficients and not the
data for c.m. motion. The magnitude of the c.m. motion correction factor is sub-
ject of ongoing discussions [16] and is far from established. We stress that the
c.m. correction factor cannot be computed in a model-independent fashion. To
estimate the c.m. correction factor, we have simulated the number of events in
the probed phase with and without accounting for pair c.m. motion. We simulate
the interaction of a virtual photon with a nucleon pair inside a nucleus. We as-
sume that the virtual photon reacts instantly with one of the nucleons inside the
pair, i.e. the virtual photon is entirely absorbed by one of the paired nucleons. In
Ref. [2] we stated a c.m. correction factor of 1.7 + 0.3 which shows little mass
dependence. For light nuclei our predictions corrected for c.m. motion of the
pairs, underestimate the measured as. This may be attributed to the lack of long-
range clustering effects in the adopted wave functions. Indeed, it was pointed
out in Ref. [18] that the high-density cluster components in the wave functions
are an important source of correlation effects beyond the mean-field approach.
For heavy nuclei our predictions for the relative SRC probability per nucleon
do not saturate as much as the data seem to indicate. We stress that final-state
interactions (FSI) represent another source of corrections which may induce an
additional A-dependent correction to the data. FSI of the outgoing nucleons with
the residual spectator nucleons, could shift part of the signal’s strength out (or,
in) of the cuts applied to the experimental phase space and decrease (or increase)
the measured cross section and the corresponding a9 coefficient.

3.2 EMC effect

In 1983, the EMC collaboration discovered that the ratio R(xp) of the Deep
Inelastic Scattering (DIS) cross section of leptons on a nucleus and the deuteron
differs from one [19]. At medium Bjorken zp-values, 0.3 < zp < 0.7, R(zp)
drops from approximately one to values as low as 0.8. This effect is known as
the EMC effect. This reduction of R(x ) is not easily explained and so far there
still is no established explanation yet. More recently, a linear relation between
the slope of the EMC effect —% in the region 0.3 < xp < 0.7, and the SRC
scaling factor az(A/D), obtained from inclusive electron scattering, has been
found [20]. Consequently, one may expect that —% could be related to the
number of SRC-prone pairs in the nucleus. When computing the a2 (A/D) co-
efficients we included the SRC-prone (S = 1,7 = 0) pn pairs. This is justified
by the dominance of the tensor correlation in the inclusive electron scattering
data at moderate momentum transfers and high xp. In the DIS experiments,
which are performed at considerably higher )2, partons are the relevant degrees
of freedom and one may argue that all correlated 2N pairs should be counted
equally. Therefore when relating —% to the number of correlated pairs, one
should count all SRC-prone pairs including the (S = 0,7 = 1) pairs.

In Figure 3 we display the magnitude of the EMC effect, quantified by means

dR

of ——-— versus our predictions for the “per nucleon probability for 2N SRC
T B
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Figure 3. The magnitude of the EMC effect versus our predictions for the “per nucleon
probability for 2N SRC relative to the deuteron”, % (Npn(s=1)+Npn(s=0)+Npp+Nunn).
The data are from the analyses presented in Refs. [16,21,22]. The fitted line obeys the
equation —-2& = (0.11 £ 0.03) + (0.036 = 0.005) - 2 (Npn + Npp + Nun).
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Figure 4. Relation between the effective mass ratio n = % of Ref. [24] and the “per

nucleon probability for 2N SRC relative to deuteron”. The fitted line obeys the equation
n = (1.0012 £ 0.0006) + (0.0033 £ 0.0001) + = (Npn + Npp + Nun).

relative to the deuteron”, or % (Npn(s=1) + Npn(s=0) + Npp + Nnp). We stress
that the numbers which one finds on the x-axis are the results of parameter-free
calculations. We consider the ’per nucleon probability for 2N SRC relative to the
deuteron” as a measure for the magnitude of the nucleon-nucleon SRC in a given
nucleus. As can be seen in Figure 3, there is a nice linear relationship between
the quantity which we propose as a per nucleon measure for the magnitude of
the SRC and the magnitude of the EMC effect.

In Ref. [23] a formalism to describe the EMC effect was developed by intro-
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ducing an effective mass. In this formalism the nucleons bound in a nuclei are
assumed to have a different effective mass m* than the free nucleon mass m. A
calculated ratio of nuclear to free structure function is fitted to the experimen-
tal values of the nucleus to deuteron structure function. The nuclear structure
function is a convolution of the free structure function and a distribution func-
tion which accounts for Fermi smearing and binding effects. The effective mass
remains the only free parameter which is fixed by the fit. The formalism is quite
efficient in describing the EMC data. In Figure 4 we relate the latest value for
the ratio of the free nucleon mass to the effective one, n = % [24], to our cal-
culated “per nucleon probability for 2N SRC relative to deuteron”. It is obvious
that there is a linear relation between the effective mass parameter, used to de-
scribe the EMC effect and our “per nucleon probability for 2N SRC relative to
the deuteron”, which is our estimate for the amount of nucleon-nucleon pairs in
a nucleus prone to correlations.

4 Conclusion

We have provided arguments that the mass dependence of the magnitude of the
NN correlations can be captured by some approximate principles. Our method is
based on the assumption that correlation operators generate the correlated part of
the nuclear wave function from that part of the mean-field wave function where
two nucleons are spatially “sufficiently close”. We have calculated the number
of pn, pp and nn (n12 = 0, l12 = 0) SRC-prone pairs and studied their mass and
isospin dependence. The A dependence of the magnitude of the pp, nn, and pn
SRC can be captured in a in a power-law dependence, A* with & = 1.35+0.03.

We related the experimentally determined scaling parameter as (A/D) to
our computed ”per nucleon probability for a pn SRC relative to deuterium®.
To connect the computed number of SRC pairs to the measured as (A/D) cor-
rections are in order. Published experimental data include the radiation and
Coulomb corrections. The correction factor stemming from final-state interac-
tions and from the c.m. motion of the correlated pair, however, is far from estab-
lished. After correcting for the c.m. motion of pairs in a finite nuclei, our model
calculations for ay are of the right order of magnitude. We predict a rather soft
mass dependence which for heavy nuclei, however, is stronger than what the ex-
periments indicate. It remains to be studied whether final-state interactions can
account for this additional mass dependent correction factor.

We find a linear relationship between the magnitude of the EMC effect and
the computed per nucleon number of SRC-prone pairs. Also other parameters
used to describe the EMC effect, like the effective mass parameter, tend to have
a linear relationship to our predictions for the per nucleon number of SRC 2N
pairs. Those may indicate that the EMC effect is (partly) driven by local nuclear
dynamics (fluctuations in the nuclear densities), and that the number of SRC-
prone pairs serves as a measure for the magnitude of this effect.
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