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Abstract. Analysis is performed of calculations of the elastic scattering dif-
ferential cross sections of pions on the 28Si, 40Ca, 58Ni and 208Pb nuclei at
energies from 130 to 290 MeV basing on the microscopic optical potential (OP)
constructed as an optical limit of a Glauber theory. Such an OP is defined by the
corresponding target nucleus density distribution function and by the elemen-
tary πN amplitude of scattering. The three (say, “in-medium”) parameters of
the πN scattering amplitude: total cross section, the ratio of real to imaginary
part of the forward πN amplitude, and the slope parameter, were obtained by
fitting them to the data on the respective pion-nucleus cross sections calculated
by means of the corresponding relativistic wave equation with the above OP.
A difference is discussed between the best-fit “in-medium” parameters and the
“free” parameters of the πN scattering amplitudes known from the experimental
data on scattering of pions on free nucleons.

1 Introduction

There is a great number of papers on pion-nucleus scattering at different en-
ergies. In theoretical study two approaches are usually employed. First, the
microscopic Kisslinger potential is based on s−, p−, and d−πN scattering am-
plitudes having six and more parameters obtained from phase analysis of πN
data [1].

Second approach is the Glauber high-energy approximation (HEA) that uses
analytic form of the πN amplitude inherent in high energy scattering [2]. Such
approach was employed, for example, in [3].

Here we utilize our HEA-based microscopic optical potential (OP) [4] for
calculation of π-nucleus elastic scattering. This potential is constructed as an
optical limit of a Glauber theory. Such an OP is defined by the known density
distribution of a target nucleus and by the elementary πN amplitude of scatter-
ing.

The πN amplitude itself depends on three parameters: total cross section σ,
the ratio α of real to imaginary part of the forward scattering πN amplitude, and
the slope parameter β. For π-scattering on “free” nucleons they are known, in
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principle, from the phase analysis of the pion-nucleon scattering data. However,
if one studies the pion-nucleus data then respective “in-medium” pion-nucleon
amplitudes can be extracted. Thus the established best-fit “in-medium” πN pa-
rameters can be compared with the corresponding parameters of the “free” πN
scattering amplitudes.

The aim of our study is an explanation of the experimental pion-nucleus data
in the region of (3 3)-resonance energies and estimation of the “in-medium”
effect on the elementary pion-nucleon amplitude.

2 Basic Equations

The differential cross sections are calculated by solving the relativistic wave
equation [5] with the help of the standard DWUCK4 computer code [6]:(

Δ + k2
)
ψ(�r) = 2μ̄U(r)ψ(�r), U(r) = UH(r) + UC(r). (1)

Here k is relativistic momentum of pion in c.m. system:

k =
MAk

lab√
(MA +mπ)2 + 2MAT lab

, klab =
√
T lab (T lab + 2mπ) , (2)

μ̄ = EMA/[E +MA] – relativistic reduced mass, E =
√
k2 +m2

π – total
energy, mπ and MA – the pion and nucleus masses, T lab and klab – kinetic
energy and momentum of pion in the laboratory system.

The HEA-based microscopic optical potential U consists of nuclear and
Coulomb parts. The nuclear part is as that derived in [4]:

UH = −σ (α+ i)· �cβc

(2π)2

∫ ∞

0

dq q2j0(qr)ρ(q)fπ(q) , fπ(q) = e
−βq2

2 , (3)

where �c = 197.327MeV·fm, βc = k/E, j0 is the spherical Bessel function,
fπ(q) – form factor of πN -scattering amplitude, ρ(q) – form factor of the nu-
clear density distribution in the form of symmetrized Fermi-function:

ρSF (r) = ρ0
sinh (R/a)

cosh (R/a) + cosh (r/a)
, ρ0 =

A

1.25πR3

[
1 + (

πa

R
)2
]−1

(4)

Parameters of radiusR and diffuseness a are known from electron-nucleus scat-
tering data.

Three parameters of the πN scattering amplitude are obtained by fitting to
the experimental πA differential cross sections:

• σ, total cross section πN ,
• α, ratio of real to imaginary part of the forward πN amplitude,
• β, the slope parameter.
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We minimize the function

χ2 = f (σ, α, β) =
k∑
i

(yi − ŷi(σ, α, β))2

(sas
i)2

, (5)

where yi = log [
dσ

dΩ
]i and ŷi = log [

dσ

dΩ
(σ, α, β)]i are, respectively, experimen-

tal and theoretical differential cross sections of elastic scattering. Asymmetric
experimental errors sas

i are calculated at each i-th experimental point as follows

sas
i =

{
y
(+)
i − yi if ŷi > yi

yi − y(−)
i if ŷi < yi

(6)

where y(+)
i and y(−)

i are, respectively, maximal and minimal estimations of the
experimental value yi.

The fitting technique is based on the asynchronous differential evolution al-
gorithm [7, 8].

3 Results and Discussion

Figures 1–5 show the differential cross sections of elastic pion-nucleus scattering
at energies between 291 and 130 MeV calculated using the OP presented in
Section 2. Parameters (radius R and diffuseness a) of the target nuclear density
distribution are following: R = 3.134 fm and a = 0.477 fm for 28Si [9]; R =
4.2 fm and a = 0.475 fm for 58Ni [10]; R = 3.593 fm and a = 0.493 fm
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Figure 1. Comparison of the calculated pion-nucleus elastic scattering differential cross
sections at T lab = 291 MeV with experimental data from [12]. The best-fit “in-medium”
parameters σ, α, and β are given in the Table 1.
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Figure 2. The same as in Figure 1 but for T lab = 162 MeV. The experimental data are
from [13].
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Figure 3. The same as in Figure 1 but for T lab = 130 MeV. The experimental data are
from [14] and [15].

for 40Ca [9]; R = 6.654 fm and a = 0.475 fm for 208Pb [11]. Calculated
best-fit parameters σ, α, and β of the in-medium pion scattering amplitude and
respective χ2 values are given in the Table 1.
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Figure 4. The same as in Figure 1 but for T lab = 180 MeV. Experimental data are
from [14] and [15].
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Figure 5. The same as in Figure 1 but for T lab = 226 and 230 MeV. Experimental data
are, respectively, from [14] and [15].
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It is seen that our results are in a reasonable agreement with experimental
data. Some dissimilarity is observed only at large angles (discussed below).

Figure 6 shows the averaged values X = (Xπ+ + Xπ−)/2 where X =
σ, α, β for the “free” π±N -scattering parameters from [16] in comparison with
the obtained, also averaged, best-fit “in-medium” parameters in dependence on
T lab.

Note, the bell-like forms of σfree and σeff (T lab) have maximum at the
same T lab. The dark gray (blue) domain σeff is located below the light gray
(yellow) σfree region. This means that the “in-medium” π±N -interaction be-
comes weaker as compared with that for “free” π±N -scattering.

“In-medium” αeff (T lab) behavior indicates that refraction increases at en-
ergy T lab > T lab

res � 170 MeV. It can be seen also that dark gray (blue) and light
gray (yellow) regions become closer at T lab > 250 MeV.

Table 1. The best-fit parameters σ, α, β and corresponding χ2/k quantities where k is
the number of experimental points.

Reaction T lab χ2/k σ α β

π−+28Si 130 2.1 7.08±0.16 0.87±0.05 0.81±0.05
π++28Si 5.5 9.61±0.14 0.04±0.02 0.85±0.04
π−+40Ca 3.9 6.97±0.11 0.89±0.01 0.87±0.03
π++40Ca 13.3 8.58±0.08 0.11±0.01 0.76±0.02

π−+28Si 162 3.5 11.02±0.1 0.04±0.02 0.39±0.02
π++28Si 6.7 8.48±0.06 0.71±0.01 0.71±0.01
π−+58Ni 10.7 10.95±0.1 -0.146±0.01 1.08±0.02
π++58Ni 7.5 9.28±0.04 0.444±0.01 0.77±0.01
π−+208Pb 3.7 9.62±0.09 0.36±0.01 1.02±0.01
π++208Pb 10.3 6.60±0.03 0.61±0.01 0.01±0.01

π−+28Si 180 10.5 10.03±0.06 0.33±0.01 0.266±0.01
π++28Si 12.1 10.24±0.07 0.31±0.01 0.323±0.01
π−+40Ca 3.3 9.44±0.11 0.25±0.02 0.29±0.01
π++40Ca 4.2 5.78±0.07 1.08±0.02 0.70±0.02

π−+28Si 226 13.8 7.36±0.06 0.596±0.01 0.175±0.01
π++28Si 23.8 9.79±0.014 -0.142±0.02 0.162±0.013

π−+40Ca 230 7.56 5.25±0.06 0.796±0.01 0.253±0.01
π++40Ca 7.70 8.95±0.02 -0.122±0.02 0.277±0.01

π−+28Si 291 6.2 5.03±0.08 -0.82±0.02 0.173±0.012
π++28Si 4.9 5.35±0.13 -0.79±0.02 0.38±0.013
π−+58Ni 3.8 4.78±0.08 -0.85±0.02 0.28±0.02
π++58Ni 2.6 5.63±0.15 -0.66±0.02 0.36±0.01
π−+208Pb 4.1 4.50±0.07 -1.06±0.02 0.666±0.02
π++208Pb 3.0 5.56±0.15 -0.45±0.02 0.588±0.02
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Figure 6. Light gray (yellow): “free” π±N -scattering parameters from the paper of
Locher et al [16]. Dark gray (blue): the best fit values Xeff = (Xπ+ + Xπ−)/2;
X = σ, α, β.
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Figure 7. (a) Differential cross sections of π++28Si scattering at 180 MeV. Solid curve:
calculation with full set of experimental points from [14]. Best-fit parameters are given
in the Table 1. Dashed curve: calculation with reduced set of experimental points; the
removed points are indicated by dark solid circles, and thus the obtained parameters are
σ = 7.54, α = 0.771, β = .538, χ2/k = 5.1. (b) Differential cross sections of
π−+28Si elastic scattering at 130 MeV. Solid curve: calculation with the best-fit param-
eters from Table 1. Dashed curve: calculation with parameters corresponding to the sec-
ond minimum of the χ2 function where one gets σ = 10.95, α = −0.328, β = 0.598,
χ2/k = 4.2.

In our study we met two numerical problems which should be accounted for
in future investigations. First problem is already mentioned disagreement be-
tween calculated and experimental cross sections at large angles, and the visible
dissimilarities increased with decreasing the energy. This effect can be explained
by the fact that the standardly applied Gaussian form of πN form factor fπ (see
Eg.(3) is not realistic in the region of large angles. Indeed, as experimentally
established in [17] the pion-nucleon cross section does not follow down but in-
creases at angles over 80-100 degrees. Our calculation shows that agreement
with experimental data is improved as we remove, in our fitting procedure, a
few experimental points at large angles. It is demonstrated on Figure 7(a) for the
case of π++28Si scattering at 180 MeV.

The other remark that should be pointed here is an ambiguity problem aris-
ing because the χ2 function (5) has more than one minimum in the region of
physically realistic parameters. In some cases two minima provide almost the
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same agreement with experimental data and additional information (such as to-
tal reaction cross sections) is needed to make a choice. This is demonstrated on
the Figure 7(b) for the case π−+28Si at 130 MeV.

4 Summary

• We show that the HEA-based three-parametric microscopic OP provides a
reasonable agreement with experimental data of pion-nucleus elastic scat-
tering at intermediate energies between 130 and 290 MeV.
• Comparison of σfree and σeff shows that, at (3 3)-resonance energies,

the πN -interaction in nuclear matter is weaker than in the case of free
πN collisions.
• Behavior of parameter α indicates that the refraction increases at energies

more than T lab
res � 170 MeV.

• The decrease of the in-medium slope parameter βeff in comparison to the
free one βfree means that effective rms radius of the πN -system in nu-
clear medium becomes less than in the pion collisions with free nucleons
• Total cross section data are desirable to be involved to resolve the ambi-

guity problem.
• We should note that the usage of isospin averaged parameters of π±N -

scattering amplitudes in the microscopic OP (3) is available for nuclei with
the same numbers of protons and neutrons Z � A − Z [18]. Hence the
case of π-scattering on 208Pb with significant difference between numbers
of protons and neutrons requires a special consideration.
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