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Abstract. A collective model of nuclear quadrupole-octupole vibrations and
rotations, originally restricted to a coherent interplay between quadrupole and
octupole modes, is now developed for application to odd-A nuclei beyond this
restriction. The eigenvalue problem is solved by diagonalizing the unrestricted
Hamiltonian in the basis of the analytic solution obtained in the case of the
coherent-mode assumption. Within this scheme the yrast split parity-doublet
band is constructed by the pairs of lowest eigenvalues with positive and negative
parity obtained for the different angular momenta. Additionally we include the
calculation of transition probabilities which are fitted together with the energy
levels. As a result we obtain a unique set of model parameters which unam-
biguously determine the shape of the quadrupole-octupole potential. From the
resulting wave functions quadrupole and octupole deformation expectation val-
ues can be calculated. The approach is tested on the yrast parity-doublet band
of the nucleus 243Am.

1 Introduction

We consider both quadrupole and octupole deformations in nuclei which lead to
interesting spectra with parity effects. In the case of simultaneous quadrupole
and octupole deformations the theory provides vibrational, rotational and tran-
sitional structures. In [1]- [5] Minkov et al. applied a coherent quadrupole-
octupole motion (CQOM) model to various regions of even-even and odd-A
nuclei. This model is solved analytically after imposing equal frequencies for
the quadrupole and octupole motion (coherent mode). The solution is shortly
presented below.

The purpose of the present work, in continuation to the previous papers [6]
and [7], is to develop the model approach to odd-A nuclei beyond the coherent-
mode assumption. The structure of the spectrum of odd-A nuclei is charac-
terized by the coupling between the reflection asymmetric even-even core and
the motion of the unpaired particle and typically leads to a split parity-doublet
structure.
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The inclusion of transition probabilities into the fitting procedure leads to a
unique determination of the model parameters, which are adjusted so as to re-
produce the experimental values in the best way possible. As a consequence, the
model potentials and the resulting wave functions are obtained unambiguously,
as in case of even-even nuclei, and allow a prediction of the quadrupole and
octupole deformations by calculating the corresponding expectation values.

2 Two-dimensional Coherent Quadrupole-Octupole Model

2.1 General Hamiltonian

The starting point is a vibration-rotation Hamiltonian formulated in the collec-
tive axial quadrupole and octupole deformation variables β2 and β3 [2, 3]
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where for odd-A nuclei one has
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B2 and B3 are mass parameters, C2 and C3 are stiffness parameters, d2 and
d3 are moment of inertia parameters and d0 determines the potential shape in
the ground state. The decoupling parameter is denoted by a and π is the total
intrinsic parity, given by the product of the parities of the unpaired single particle
and the even-core wave function. K is the third angular momentum projection.

2.2 Coherent solution

The transition to ellipsoidal coordinates given by
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and the imposition of the relations
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where d = (d2 + d3)/2, allows one to obtain the energy spectrum in the follow-
ing closed formula [2, 3]
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where ω =
√
C/B and b = 2B/�2d are considered as fitting parameters. The

model wave function has the form
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where DI
M,K(θ) is the Wigner rotation function, χK is the single-particle func-

tion and
Φπ
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is the quadrupole-octupole vibration function. Here
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for the “angular” wave functions with either positive or negative parity.
For the quantum numbers n = 0, 1, 2, . . . and k = 1, 2, 3, . . . one chooses

the lowest possible values to describe the yrast spectrum in the analytical model.
This means one takes always n = 0 and k = 1 or k = 2. The choice of k leads
to an up or down shift and thus generates the parity-doublets. As seen from the
previous equations, the parity of the angular function, πϕ, depends on k and is
always positive for k = 1 and negative for k = 2. k is chosen in such a way that
the parity πϕ matches the parity of the considered energy level. Then, depending
on the parity of the single-particle, πχ, there is a shift upwards for levels with
negative parity and a shift downwards for levels with positive parity, given a
positive πχ. The situation is just opposite in case of a negative πχ. This means
there is a shift downwards for levels with negative parity and a shift upwards for
levels with positive parity.

The description of higher-lying (non-yrast) bands in the framework of the
analytical model allows the involvement of larger values of the quantum num-
bers n and k [4, 5].

2.3 Numerical diagonalization

The details about the diagonalization procedure can be found in [6]. The CQOM
basis functions Φ(η, φ) have the advantage to automatically consider the bound-
ary condition of the model, namely that the wave function must vanish along
the β3-axis. An energy cutoff for the number of basis functions is applied and
we consider only the lowest lying states for the diagonalization. The presented
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calculation results are obtained with a basis size of 50 states. It is checked that
this is enough to provide convergence of the results, i.e. the results do no longer
change if more basis states are added. Furthermore the basis is optimized as
explained in [6]. For the integration of the matrix elements we apply a formula
which allows one to obtain the numerical values of the definite integrals quickly
by means of a generalized hypergeometric function 3F2. Then the eigenvalues
and eigenvectors of the Hamiltonian matrix are calculated and we construct the
model spectrum as described in [6].

2.4 Theory of transition operators

The basic theory about electromagnetic transitions in the coherent case can be
found in [1]. We use the same transition theory as explained in [4] and [7].
This means we apply a generalization of the transition operators for a given
fixed nuclear shape, which allows us to take into account the “overtones” related
to the coherent collective oscillations of the system. The only difference is that
while for even-even nuclei the projectionK of the collective angular momentum
on the principal symmetry axis is taken as zero, in the case of odd-A nuclei it is
always nonzero (half-integer) and we take it equal to the value suggested by the
experiment.

The fitting procedure for transitions also includes an effective charge e1eff ,
which can have a value different from one, and is an adjustable parameter. We
take into account transition probabilities related to the yrast band. As mentioned
in [7], this is very important and necessary in order to obtain a set of parameters
which is uniquely determined.

3 Application to 243Am

Once the diagonalizations have been performed for all angular momenta, one
obtains an yrast spectrum and is able to define a σRMS function which gives the
root mean square deviation from the experimental levels. The transition prob-
abilities are calculated and we construct an overall root mean square (RMS)
deviation function including both energies and transitions. The transitions are
included with weight factors providing the same order of magnitude for the fit-
ting procedure. Then the model parameters B2, B3, C2, C3, d2, d3, d0 and e1eff
can be adjusted so as to provide the best description of experimental data.

In order to test the numerical procedure described above we performed cal-
culations for the nucleus 243Am. The angular momentum on which the yrast
parity-doublet band of this nucleus is built is 5/2− and, therefore, the fit does
not include a decoupling parameter. As an initial guess for the minimization
we take the parameter values obtained from the CQOM model. As a result we
obtain the theoretical energy levels and transition probabilities corresponding to
the experimental data [8] available for the yrast split parity-doublet spectrum of
243Am.
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Table 1. Parameters of the model fits obtained by the coherent (analytical) and non-
coherent (numerical) model solution for 243Am. The parameters B2, B3 are given in
units of �

2/MeV,C2 andC3 are given in units of MeV, d2 and d3 are given in �
2·MeV−1,

d0 is given in �
2 and e1eff is in units of elementary charge.

Parameters B2 B3 C2 C3 d2 d3 d0 e1eff

coherent 421.3 1856.5 4.48 19.75 1335.3 5883.4 6.84 0.531
non-coherent 12.02 71.96 20.38 2.433 781.7 499.7 26.20 0.297

The resulting optimal parameters are given in Table 1. The mass parameters
B2 and B3 are fitted to quite small values in the non-coherent case compared
to the coherent one. The stiffness parameters C2 and C3 show some change
but remain in the region of 10 MeV. Also d2 and d3 are reduced in value in the
non-coherent case. The non-coherent d2-value is half of the d2-value for the
coherent case and in case of d3 the non-coherent value is even less than 10 % of
the coherent value. d0 and e1eff both change a bit, but not dramatically.

In Table 2 the energy values obtained in both, coherent and non-coherent
cases are compared to experimental data. As we see, the overall agreement
between theory and experiment is better in the non-coherent case. This is con-
firmed by the fact that the root mean square deviations between theory and ex-
periment are σRMS = 11.74 keV for the coherent case (analytical solution) and
σRMS = 6.48 keV for the full solution.

Table 2. Energies from the coherent (analytical) and the non-coherent (full numerical)
solution of the model as well as experimental energies, in keV, for the yrast parity-doublet
spectrum of 243Am. The data is taken from [8].

Iπ E (coherent) E (non-coherent) E (exp)

5/2+ 66.951 75.991 84.0
7/2+ 107.196 108.640 109.2
9/2+ 152.339 148.690 143.5
11/2+ 200.747 194.981 189.3
13/2+ 251.384 246.353 244.0

5/2− 0.000 0.000 0.000
7/2− 51.000 47.951 42.2
9/2− 104.455 103.243 96.4
11/2− 159.285 162.976 162.3
13/2− 214.952 225.038 238.0

The values of the transition probabilities in Weisskopf units are given in
Table 3. The E2 transition value is fitted exactly by both the coherent and non-
coherent model. This is a result of the fact that there is only 1 value to fit. The
theoretical E1 transition values are reasonably close to the experiment.
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Table 3. Theoretical (full solution) and experimental values of B(E1) and B(E2) transition
probabilities in Weisskopf units (W.u.) for the yrast parity-doublet spectrum of 243Am.
The data is taken from [8].

Mult Transition Exp [W.u.] Theo [W.u.] weight

E2 7/2− → 5/2− 574 574 10−1

E1 5/2+ → 5/2− 9.7 · 10−5 8.8 · 10−5 105

E1 5/2+ → 7/2− 2.6 · 10−5 3.5 · 10−5 105

We also calculate the corresponding wave function for the ground state angu-
lar momentum I0 = 5/2− and the resulting quadrupole deformation expectation
value given by

〈β2〉 =
∫ ∞
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0

β2Φ(β2, β3)2dβ2dβ3 , (10)

as well as the octupole deformation expectation value given by
√
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These values are obtained as 〈β2〉 = 0.298 and
√
〈β2

3〉 = 0.287. The wave
function at I = I0 is plotted in Figure 1. According to [9] the β2 deformation of
243Am is 0.224 which is not too far away from the fitted value.
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Figure 1. Wave function from the full model solution for 243Am at angular momentum
I = 5/2−.

4 Discussion and Outlook

The numerical solution for the nucleus 243Am leads to a better description of
the yrast spectrum, and the RMS value for the energies could be improved by
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a factor of about 2. At the same time the B(E1) transition probability values
in Table 3 do not deviate too much from experimental data. The B(E1) values
for the coherent case are 8.9 · 10−5 W.u. instead of 8.8 · 10−5 W.u. for the
5/2+ → 5/2− transition which is almost the same, and 4.3 · 10−5 W.u. instead
of 3.5 · 10−5 W.u. for the 5/2+ → 7/2− transition which is a bit worse.

The B(E2) is exactly the same because we consider only one experimental
value. All in all, the obtained results are in agreement with our expectation and
experience from the calculations for even-even nuclei.

The obtained deformation expectation value for β2 is quite reasonable while
the octupole deformation expectation value seems to be too large. From the
wave function it can be seen that due to the obtained parameters, the potential is
of such a shape that the region of highest deformation probability is located at
two symmetrically seated maxima, while the probability is a bit reduced along
the β2-axis.

It should be kept in mind that the fitting algorithm finds a local minimum
and it eventually could be that there is another minimum which provides an
even better description. During the calculation of several other odd-A nuclei it
turned out that when the coherent minimum is taken as initial guess for the fitting
algorithm, the RMS deviation could only be improved very unsignificantly.

This problem of escaping the given analytical minimum could be avoided
by either choosing another guess or another algorithm (currently we use the
Powell algorithm as described in [10]). Both of these ideas are currently under
investigation.
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