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Abstract. This contribution is a status report of the project aiming to describe
the low-lying structure of the Zr isotopic chain by large scale shell model calcu-
lations. An iterative matrix diagonalization algorithm for solving the eigenvalue
problem in them – scheme combined with an importance sampling for an effec-
tive truncation of the shell model space is used. The reliability of the method is
tested within a large model space spanned by the (1f5/2, 2p1/2, 2p3/2, 1g9/2)
shells for protons and (2d5/2, 3s1/2, 2d3/2, 1g7/2, 1g9/2, 1h11/2) for neutrons.
We study the properties of the N = 96, 98 zirconium isotopes. In this case
a rigorous procedure for truncation the configuration space is required and we
implement the importance sampling mentioned above.

1 Introduction

The nuclear shell model is the most adequate tool for describing the low–energy
structure of atomic nuclei. The method requires a diagonalization of the Hamil-
tonian of the system. The sizes of the Hamiltonian matrix increase dramatically
as the number of valence shells and/or valence nucleons increases. Thus, a se-
vere truncation of the configuration space is required.

Many truncation methods have been attempted. It may be worth to mention
the coupled cluster and the quantum Monte Carlo diagonalization [4] methods.
The first was introduced in the 1960s [1] and widely adopted in quantum chem-
istry (the state-of-art is reviewed in [2]) and nuclear physics (see [3] for the lat-
est results). The second achieves the truncation of the model space by sampling
stochastically the basis states.

A newly developed shell model technique [5, 6] was updated recently [7]
and applied extensively to study the spectroscopic properties of the N = 80 iso-
tones [8] and the heavy Te and Xe isotopes below and above the N = 82 shell
closure [9–11]. These calculations have shown that the method, dubbed APL, is
robust and of easy implementation. The importance sampling the algorithm is
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endowed with yields an effective truncation with full control of the accuracy of
the solutions.

The long chain of Zr isotopes is a good testing ground for a number of prob-
lems like the evolution of the shell structure. There are also new experiments
concerning the low lying structure of these nuclei [13,14] which require detailed
theoretical studies in this region.

In this contribution, we will discuss a methodological aspect of our project,
namely the convergence of the importance sampling for 96,98Zr, where the sizes
of the shell model Hamiltonian exceed N ∼ 1010.

2 The Algorithm

The development of the APL shell model approach went through several steps
before being implemented to large–scale shell model problems. The first one
was the introduction of an iterative method for generating a subset of eigenvec-
tors of large matrices as an alternative to the Lanczos and Davidson algorithms.
We will outline just the key elements of the procedure. A more complete and
detailed description can be found in [5].

Let us consider the simplest possible case of a symmetric matrix representing
a self-adjoint operator Â in an orthonormal basis {| 1〉, | 2〉, . . . , | N〉}. We will
look for the lowest m eigenvectors of the matrix. There are two major stages of
the algorithm: an initialization loop and a subsequent set of refinement loops.
The initialization begins with diagonalizing the matrix (aij) (i,j = 1, n), whose
sizes n fulfill the relation (m < n � N). The lowest m eigenvalues λi and
eigenvectors | φi〉, are used for constructing the next matrix to be diagonalized

α =
(
λ bj
bj a′

)
. (1)

This takes into account the next portion of configuration states from (n + 1) to
n′. In Eq. (1) {λ} is a diagonal block containing the eigenvalues (λn

i , i = 1,m),
{bj} is a block with elements bij = 〈φn

i | Â | j 〉 where (i = 1,m; j =
n+ 1, n′), and the matrix element of a′ are a′jj′ = 〈j | Â | j′〉 with (j, j′ = n+
1, n′). Its lowest eigenvalues λn′

i together with the corresponding eigenvectors
| φn′

i 〉 are further used to build a matrix, analogous to α (1), for the next subset
of the orthonormal states | j〉. This initialization loop ends when the whole
configuration space is exhausted. As a result a zero order approximation for the
lowest eigenvalues and eigenvectors is obtained

E
(0)
i ≡ λN

i , | ψ(0)
i 〉 ≡| φN

i 〉 =
N∑

j=1

c
(N)
j | j〉 , {i = 1,m}. (2)

They are used as an entry to the first refinement loop, which goes through the
same steps as describes above. One should just solve an eigenvalue problem of
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general form, since the vectors | φ〉 and | j〉 are no longer orthogonal. It has
been shown in [5] that the eigenvalues E(n) and eigenvectors | ψ(n)〉 obtained
after the n-th loop converge to the solution of the exact diagonalization of Â.

The second important step towards the implementation of APL method to
large-scale shell model problems is the choice of a sampling criterion for re-
ducing the sizes of the configuration space. Bearing in mind that the algorithm
provides quite accurate solutions already after the initialization loop, one can
sample the configuration space as follows:

• Diagonalize the submatrix {aij} (i, j = 1,m) and obtain its eigenvalues
λi;

• For j = m+ 1, . . . , N , diagonalize the m+ 1-dimensional matrix

α =

(
Λm

	bj
	bTj ajj

)
, (3)

where	bj = {b1j , b2j, . . . , bmj}.

• Accept the new state only if∑
i=1,m

| λ′i − λi |> ε , (4)

otherwise ignore the state and continue the sampling process with a new
vector j. In the above relation, ε is a small parameter which allows to
control the accuracy of the truncation. In the actual calculations we use an
upgraded important sampling procedure [12].

As it is seen, the two key elements of APL – the approximate diagonalization
of large matrices and the importance sampling are closely related. The algorithm
provides robust and always ghost–free solutions and the accuracy of the trunca-
tion procedure is fully under control. A number of tests for various shell model
problems discussed in [6] supports this statement.

3 Convergence of the Method

The aim of the APL approach is to solve shell model problems in large configu-
ration space where the diagonalization even for just few eigenvectors is beyond
the capacity of the recent computational facilities.

We perform shell model calculations in the m-scheme within the full model
space (1f5/2, 2p1/2, 2p3/2, 1g9/2) for protons and (2d5/2, 3s1/2, 2d3/2, 1g7/2,
1h11/2) for neutrons. This means that we consider the Zr isotopes as composed
of 12 valence protons and n valence neutrons external to theZ = 28 andN = 50
cores, respectively. The shell model eigenvalue problem can be solved exactly
only for the lightest Zr isotopes. It is obvious that for 96Zr and beyond, a severe
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truncation of the configuration space is required. In [17] for example, although
the space is the same considered here, it is imposed that four particles at most
can be allocated in the 1h11/2 subshell and only states of seniority 8 at most are
considered.

Here we perform for first time large scale calculations in the full configu-
ration space mentioned above. The dimensions of the model space for several
states of 96Zr and the ground state of 98Zr are listed in Table 1. In order to reduce
the sizes of the Hamiltonian matrix we adopt the importance sampling and study
the convergence of the iterative procedure to the lowest energy eigenvalues.

Table 1. Dimensions of the shell model space in the m-scheme for several states of 96Zr
and the ground state of 98Zr.

Nucleus Jπ dimension
96Zr 0+ 14 872 779 180
96Zr 2+ 14 411 129 798
96Zr 4+ 13 107 616 806
98Zr 0+ 162 778 727 590

We adopt as two-body potential a renormalized G−matrix deduced from
the “CD-Bonn” nucleon-nucleon interaction. This realistic effective potential is
produced by the code of M. Hjorth-Jensen [15]. Moreover, we use a unique set
of single particle energies, the one listed in Table 2.

Table 2. Single particle energies in MeV.

Protons Neutrons

1f5/2 -10.0 2d5/2 0.0
2p3/2 -10.5 2d3/2 1.0
2p1/2 -8.2 1g7/2 2.3
1g9/2 -7.6 3s1/2 2.5

1h11/2 3.5

In order to render the numerical procedure more efficient we perform an ef-
fective projection of the total angular momentum by using the modified Hamil-
tonian

H̃ = H − α
[
Ĵ2 − J(J + 1)

]2
,

where Ĵ is the total spin operator and α is a positive constant. For a sufficiently
large α, this additional term pushes at high energy the states with total spin
different from J . Thus, the low-lying spectrum is composed exclusively of levels
of spin J .

In Figure 1 we present the behavior of the energy (left panel) and the total
spin 〈J〉 (right panel) for the lowest Jπ = 0+ states in 96Zr as a function of the
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Figure 1. Convergence of the energy (left panel) and spin 〈J〉 (right panel) for the lowest
Jπ = 0+ states in 96Zr as a function of the size of the Hamiltonian. This is determined
uniquely by the sampling parameter ε in Eq. 4.

sizes of the Hamiltonian matrix. It is seen that one can reach a saturation of the
energy and of the total spin by selecting just ∼ 106 of the totality of basis states.
The figures show also that the energies converge faster than the spin. The reason
resides in the fact that the basis states probed by the spin are fewer and sparse
over the full space.

Figure 2 shows that the convergence rate is also very fast for the energies of
the low lying Jπ = 2+ and 4+ states in 96Zr.

Figure 2. Convergence rate of the lowest Jπ = 2+ and 4+ energy levels in 96Zr. The
n/N variable is the ratio between the dimensions of the sampled over the full space
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Figure 3. Convergence of the energy of the lowest Jπ = 0+ states in 98Zr.

Finally, we face the shell model problem in 98Zr. For this isotope, the model
space has the prohibitive dimensionsN ∼ 1011. Figure 3 shows that the dimen-
sions of the sampled Hamiltonian matrix is only of the order n ∼ 106. It may be
worth to point out once again that the sampling explores the full configuration
space.

The good convergence properties obtained for all Zr isotopes, especially for
the heavier and most challenging 98Zr, prove that the APL method is extremely
efficient and can be safely applied to medium and heavy nuclei.

Moreover, the smooth behavior of the energy curves may allow extrapolation
to the asymptotic values. Figure 3, indeed, shows that the sampled data are fitted
very well by the function

E(n) = E0 −A exp(−n/t). (5)

Table 3 offers a more detailed comparison. The extrapolated values of the first
three Jπ = 0+eigenvalues E and excitation energies e agree very well with the
energies obtained by the extrapolation function.

This function is different from the exponential extrapolation law proposed
in [6]. On the other hand, it might well be that the extrapolation laws depend on
the specific problem under exam.
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Table 3. Calculated and extrapolated values of the lowest eigenvalues of the Hamiltonian
E and the excitation energies e for the Jπ = 0+ states in 98Zr.

Nucleus E E0 e e0

0+
1 -173.256 -173.277 0.000 0.000

0+
2 -172.039 -172.087 1.217 1.190

0+
3 -171.288 -171.284 1.968 1.993

4 Conclusions

The results reported here show that the iterative APL method for diagonalizing
large matrices is of easy implementation and, combined with the inherent im-
portant sampling, offers an efficient tool for solving the shell model eigenvalue
problem in very large spaces.

This statement finds confirm in the illustrative examples, presented here,
concerning 96,98Zr. We have shown that convergence to the eigenvalues of the
Hamiltonian can be reached by just a fraction of the total configurations. More-
over, the curves leading asymptotically to the energy eigenvalues can be fitted
by a simple exponential law. This suggests that the method may allow to ex-
trapolate the curves resulting from the iterative procedure to the exact solutions
even when the model space is too large to be fully and thoroughly covered by
the sampling.

We can therefore state confidently that the implementation of the proposed
method can widen the area of application of the shell model to nuclei with large
number of valence nucleons in very large configuration spaces.

The future effort within this project will be focused on the systematic study
of the spectroscopic properties of the Zr isotopes.
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(1960) 477.

[2] R.J. Bartlett and M. Musiał, Rev. Mod. Phys. 79 (2007) 291.

[3] G. Hagen, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, A. Schwenk, Phys. Rev. C
76 (2007) 044305.

[4] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 75 (1995) 1284.

[5] F. Andreozzi, A. Porrino and N. Lo Iudice, J. Phys. A 35 (2002) L61.

[6] F. Andreozzi, N. Lo Iudice and A. Porrino, J. Phys. G 29 (2003) 2319.

106



Shell Model Calculations for Even Zirconium Isotopes

[7] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino and F. Knapp, J. Phys. G: Nucl.
Part. Phys. 38 (2011) 025103.

[8] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino and F. Knapp, Phys. Rev. C 85
(2012) 034332.

[9] D. Bianco, N. Lo Iudice, F. Andreozzi, A. Porrino and F. Knapp, Phys. Rev. C 86
(2012) 044325.

[10] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino and F. Knapp, Phys. Rev. C 84
(2011) 024310.

[11] D. Bianco, N. Lo Iudice, F. Andreozzi, A. Porrino and F. Knapp, Phys. Rev. C 88
(2013) 024303.

[12] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino and S. Dimitrova, in Proc. of the
18th International School on Nuclear Physics, Neutron Physics and Applications,
21-27 September 2009, Varna, Bulgaria; J. Phys.: Conf. Series 205 (2010) 12002.

[13] E. Elhami et al., Phys. Rev. C 78 (2008) 064303.
[14] A. Chakraborty et al., Phys. Rev. Lett. 110 (2013) 022504.
[15] M. Hjorth-Jensen, Software for Nuclear Physics, “Codes for both renormalization

and effective interaction”, URL: www.computationalphysics.net.
[16] R. Machleid, Phys. Rev. C 63 (2001) 024001.
[17] K. Sieja, F. Nowacki, K. Langanke and G. Martinez-Pinedo, Phys. Rev. C 79 (2009)

064310.

107




