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Abstract. Nuclear collective models can be constructed in various ways. One
of the most popular and effective method is the prescription given by Bohr and
Mottelson. This method leads to constructions of nuclear collective spaces cor-
responding to the appropriate classical models.

In this paper the general structure of such spaces generated by sets of spherical
tensors representing different kinds of nuclear deformations (motions) is revis-
ited. The special features of such spaces constructed in the intrinsic frame are
shown.

1 Introduction

Nuclear collective models can be constructed in various ways. One of the most
popular and effective method is prescription proposed by Bohr and Mottelson
[1–4]. The method can be described as a few steps recipe (to make description
more transparent we consider only quadrupole plus octupole motions):

• At the beginning one needs to choose collective variables in the laboratory
frame, e.g. quadrupole plus octupole deformation parameters {α(lab)

2μ , α
(lab)
3μ }.

• Using these variables one needs to construct the appropriate classical col-
lective Hamiltonian in the laboratory frame

H = T + V(α(lab)), (1)

where the kinetic energy is written as

T =
1
2

∑
λμ

Bλ|α̇(lab)
λμ |2 (2)

and the potential energy is given by

V = V(α(lab)). (3)
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This collective Hamiltonian is required to be invariant under orthogonal
group O(3) acting in the laboratory frame.

Usually, at this moment, the metric tensor of the collective manifold of
variables α(lab) is chosen in the form compatible with tensor structure of
collective variables:

ηlab
(λμ)(λ′μ′) = Bλ

√
2λ+ 1(λμλ′μ′|00), (4)

where the parameterBλ denotes constant collective mass for λ-mode, and
the expressions (λ1μ1λ2μ2|λμ) are standard Clebsch-Gordan coefficients
for rotation group. The constant masses only scale the unique metric in
the space of laboratory deformation parameters conserving their structure.

• Next step is transformation of these laboratory collective variables and
the classical Hamiltonian to the so called intrinsic frame – typically to the
rotating frame of reference:

αλμ =
∑
μ′
Dλ

μ′μ(Ω)α(lab)
λμ′ (5)

where, in addition

α2,±1 = 0, α22 − α2,−2 = 0 (6)

Note, that the rotation angles are here determined only by quadrupoles, no
octupole degrees of freedom are involved.

In the intrinsic frame kinetic energy can be decomposed into vibrational
kinetic energy

Tvib =
1
2

∑
λμ

Bλ|α̇λμ|2 (7)

and the rotational kinetic energy

Trot =
1
2

∑
λ

∑
νν1

∑
kk1

[
Bλαλναλν1(−1)λ〈λν|JkJk1 |λν1〉

]
ωkωk1 . (8)

The dynamic coupling term between vibrations and rotations disappears
if α2±1 = 0 and α22 = α2,−2. The only coupling is given by dependence
of inertia parameters on deformation variables.

• The next important step is quantization of constructed classical Hamil-
tonian – in fact it is not unique procedure. Usually the Podolsky–Pauli
prescription for quantization of classical intrinsic (not laboratory) Hamil-
tonian is used [3]. The most sensitive to the quantisation procedure is
kinetic energy.
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To define a quantum Hamilton operator one needs also to construct a
Hilbert space of states. The problem has also not unique solution. Usually
is assumed that the kinetic energy operator is identified with the Laplace-
Beltrami operator in intrinsic collective variables:

T → −�
2

2

∑
kk′

1√
|η|

∂

∂qk

√
|η|ηkk′ ∂

∂qk′ , (9)

where the metric tensor is given by (4) transformed to intrinsic variables:

ηkk′ (q) =
∑

λμ,λ′μ′

∂α
(lab)
λμ

�

∂qk

∂α
(lab)
λμ′

�

∂qk′ ηlab
(λμ)(λ′μ′), (10)

where qk are used to label the intrinsic collective variables α and Ω in
more uniform form.

The metric tensor (10) determines, in a natural way the volume element
in the integral which defines the scalar product in space of square inte-
grable functions of collective variables in the intrinsic frame. The col-
lective Hamiltonian has to be Hermitian in respect to this scalar product.
One needs to realize, however, that the same goal one can reach in several
ways defining scalar product with additional weight functions.

• The Bohr type procedure leads to intrinsic nuclear collective Hamiltonian
which, in fact, is non-physical Hamiltonian – it is not invariant in respect
to the symmetrization group. This Hamiltonian has to be “renormalized”
in an appropriate way to get physical solutions.

First one needs to find a set of eigenfunctions of resulting collective Hamil-
tonian. Next one has to choose within them only physical solutions. The
possible physical solutions have to be invariant in respect to the sym-
metrization group. This procedure is known as symmetrization of col-
lective wave function procedure, e.g. see § 4.1 of [3] and references there
in, more recent analysis can be found in the paper [7].

Obviously, there are alternative methods of obtaining differential form of collec-
tive quantum Hamiltonian. The Gaussian Overlap Approximation for the Gen-
erator Coordinate Method is an example of such derivation.

In this paper the general structure of collective spaces generated by sets of
spherical tensors representing different kinds of nuclear deformations (motions)
is revisited. The problem became important after suggestions of existence in
nuclei higher point symmetries than spherical, axial and tri-axial [8].

We are consider here some, selected special features of spaces constructed
in the intrinsic frame. For example, we propose definition of collective variable
by construction of appropriate quantum observables. This definition implies a
possibility of decomposition of physical properties of intrinsic variables into dif-
ferent classes of quantum motions, e.g. one can separate rotational degrees of
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freedom from vibrational variables. Another problem is quality of collective
variables. We show some problems with collective surface variables which, in
fact, allow for strange, unprobable nuclear shapes. We also revisit the unique-
ness problem of transformations from laboratory to intrinsic frame using group
orbits notion. The last problem touched in this short article is related to relation
between mass parameters and metric in the collective variables space.

2 Collective Variables

There are different ways, not always equivalent, of introducing collective vari-
ables. We propose here one more method of defining collective variables based
on a set of observables. The method is quite general, but we restrict our consid-
erations to variables related to nuclear surface.

Let q1, q2 and q3 be a set of curvelinear coordinates in R3. The general
equation describing two-dimensional surface in three dimensional space can be
written as:

qk = qk(u, v) where k =, 1, 2, 3. (11)

where, nearly without loss of generality one can assume that the functions qk(u, v)
are square integrable functions, i.e. qk ∈ L2(S), where the compact subset of
variables S ⊂ R2 parametrizes this nuclear surface.

The space L2
ρ(S) is a Hilbert space of square integrable functions with the

scalar product

〈ψ|φ〉 =
∫

S

dudv ρ(u, v)ψ(u, v)�φ(u, v), (12)

where ρ(u, v) > 0 is an appropriate weight function.
In this space one can choose the orthonormal basis {en(u, v)} having an

appropriate physical meaning determined by the set of commuting physical ob-
servables Âl, where l = 1, 2, . . . , r. This choice is arbitrary, however, it should
be dependent on the most important either physical or formal features required
for collective variables under construction. The orthonormal basis allows to ex-
pand the surface functions in the following way:

qk(u, v) =
∑

n

Cn,k en(u, v). (13)

where the expansion coefficients Cn,k:

Cn,k =
∫

S

dudv ρ(u, v) en(u, v)�qk(u, v) (14)

are required collective variables describing the nuclear surface in terms of Âl.
The multipole collective variables are the most known example of such pro-

cedure. In this case the curvelinear coordinates describing nuclear surface are
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identified with standard spherical coordinates {q1 = r, q2 = θ, q3 = φ}. The
simplest parametrization of nuclear surface can be done by making use: u =
θ, v = φ. The single equation describing shape of a surface can be written as:
r = R(θ, φ) ∈ L2(SO(2)). The very natural observables related to this situa-
tion are: square of angular momentum operator Â1 = Ĵ2 and its third compo-
nent Â2 = Ĵz . The common eigenvectors of both angular momentum operators
are given by spherical harmonics {en(u, v) = Ylm(θ, φ)}. It leads to known
expansion of nuclear surface into spherical harmonics:

R(θ, φ) = R0(1 +
∑
λ,μ

α
(lab)�
λμ Yλμ(θ, φ)). (15)

This expansion determines some properties of the laboratory surface collective
variables α(lab)

λμ like:

• Reality of surface requires the following relation (α(lab)
λμ )� = (−1)μα

(lab)
λ,−μ.

• Because the shape of the surface is independent on its orientation, proper-
ties of spherical harmonics implies that α(lab)

λμ are covariant components
of irreducible spherical tensor of rank λ:

R̂(Ω)α(lab)
λμ =

∑
μ′
Dλ

μ′μ(Ω)α(lab)
λμ′ , (16)

whereDλ
μ′μ(Ω) are standard Wigner functions of the rotation group SO(3)

parametrized by Euler angles Ω = (Ω1,Ω2,Ω3) and R(Ω) is rotation op-
erator [9]. In addition, using transformation properties of spherical har-
monics in respect to the space inversion operation Ĉi one gets:

Ĉiα
(lab)
λμ = (−1)λα

(lab)
λμ . (17)

For spherical tensors ξ(lab)
λ and ζ(lab)

λ one can define scalar product

ξ
(lab)
λ · ζ(lab)

λ =
∑
μν

η(lab)λμ,λνξ
(lab)
λμ ζ

(lab)
λν (18)

where the metric tensor:

η(lab)λμ,λ′ν =
√

2λ+ 1(λμλ′ν|00) = δλλ′ (−1)μδ−ν
μ (19)

is determined by the special case of Clebsch–Gordan coefficients (λ1μ1λ2ν2|λ2μ3)
which couple both tensor to the total angular momentum 0. This is the only pos-
sible (up to multiplicative constant factors) scalar form for spherical tensors.
This proves that the metric tensors (4) and (10) are correctly defined.
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A very well known example of an important deformation characteristic is the
βλ rotational invariant obtained as scalar product of αλ deformation variable by
itself:

β2
λ = α

(lab)
λ · α(lab)

λ =
∑
μν

α
(lab)
λμ [(−1)μα

(lab)
λ,−μ] =

∑
μ

|α(lab)
λμ |2 ∈ R. (20)

Because β2
λ is the only second order rotational scalar this function represents

potential energy in the 2λ+ 1 dimensional classical harmonic oscillator Hamil-
tonian:

Hho =
∑

λ

[
1
2
Bλα̇

(lab)
λ · α̇(lab)

λ +
1
2
Bλω

2
λβ

2
λ

]
. (21)

In more general case than harmonic oscillator collective potential energy can be
functions of higher order invariants.

The harmonic oscillator, in reality, usually is able to represent only small
vibrations, however, after the quantization the eigenfunctions of quantum har-
monic oscillator contain not only small but arbitrarily large deformation vari-
ables independently of how small is excitation energy. It leads to the question
what kind of shapes are described by the expansion (15). A few figures pre-
sented below show some interesting cases which appear while using so defined
collective variables. In nuclear physics the expansion (15) usually starts from
λ = 2.

The λ = 0 term can be replaced by scaling factor which takes into account
very small compressibility of nuclear matter.

The λ = 1 terms are often considered to be space translation of a nu-
cleus described by the nuclear surface (15). This is only approximately true
and only for small α(lab)

1μ . In Figure 1 there is shown that adding dipole de-

formation α(lab)
1μ to quadrupole deformation α(lab)

2μ of the nuclear surface one
obtains not only a shift of the nucleus but also a change of its shape. This ef-
fect is even more pronounced for large quadrupole deformation – the ”mon-
ster” shapes are presented in Figure 2 Adding to the quadrupole shape a few
octupole variables (α(lab)

20 = 0.30, α(lab)
22 = 0.05, α(lab)

32 = 0.30) one gets a reg-
ular quadrupole+tetrahedral shape (left) but using larger (in nuclei unphysical)
deformation parameters (α(lab)

20 = 0.90, α(lab)
22 = 0.90, α(lab)

30 = 0.30, α(lab)
32 =

0.30), α(lab)
33 = 0.05 one obtains a strange quadrupole+octupole shape (right),

see Figure 3 An important observation from the presented figures is, that ranges
of collective variables of collective state functions contain also an infinite set of
unphysical values which correspond to strange shapes. It implies that more real-
istic collective state functions should be very small for these values of collective
variable to ensure negligible probabilities for contribution of such strange shapes
to nuclear collective motion. In addition, it is known, these strange shapes of-
ten correspond to rather high liquid drop model energies which is an undesired
property.
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Figure 1. The quadrupole surface α(lab)
20 = −1.5 (left) and the dipole+quadrupole surface

α
(lab)
10 = 1.5, α(lab)

20 = −1.5 (right)

Figure 2. The quadrupole surface α(lab)
20 = −5.5 (left) and the dipole+quadrupole surface

α
(lab)
10 = −9.00 α

(lab)
20 = −1.5 (right)

3 Intrinsic Frame

In previous section we were considered surface collective variables in the labo-
ratory frame. It is easy to notice that whole set of deformation parameters can
be collected into subsets representing bodies (surfaces) having the same shape
but different space orientations. It suggests that one can reparametrize the labo-
ratory variables to obtain description of nuclear shape and its orientation of the
surface in respect to the laboratory frame. This operation is usually called trans-
formation to the rotating intrinsic frame. In the following we summarize main
properties of rotating frame. More detailed analysis of transformation from lab-
oratory to intrinsic frame can be found in [10].
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Figure 3. The quadrupole+tetrahedral surface α(lab)
20 = 0.3, α(lab)

22 = 0.05, α(lab)
32 = 0.3

(left) and more complicated quadrupole+octupole surface (right)

Let us consider the collective surface variables in the laboratory frame {α(lab)
λμ }

and the rotation group SO(3) acting on these variables with the rotation opera-
tor R(Ω), parametrized by the Euler angles Ω. The group parameters Ω =
(Ω1,Ω2,Ω3) are intended to be used as a part of new (intrinsic) collective vari-
ables. The transformation formula from the laboratory to intrinsic (rotating)
frame can be written as

αλ = R̂(Ω)α(lab)
λ , (22)

where {αλμ} are redundant intrinsic collective variables – we have 2λ+ 1 vari-
ables in the laboratory frame, but (2λ + 1) + 3 intrinsic variables. There are
needed 3 additional constraints which couple the Euler angles with the deforma-
tion variables {αλμ}

Fi(α,Ω) = 0, where i = 1, 2, 3. (23)

The intrinsic variables αλ are invariant in respect to the compound rotation
R(h)LG(h), where h ∈ SO(3) and LG(h) acts on the group manifold of the
group SO(3) by left shift operation:

R(h)LG(h)αλμ = R(h)LG(h)R(Ω)α(lab)
λμ =

R(h(h−1Ω))α(lab)
λμ = R(Ω)α(lab)

λμ = αλμ. (24)

The operator R(h)LG(h) represents a simultaneous rotation of the intrinsic
frame in respect to the laboratory one and the corresponding laboratory col-
lective variables by the same angles.

For further purpose we need the notion of intrinsic group. The most general
definition is given in the textbook [5]:
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Def. For each element g of the group G, one can define a corresponding
operator ḡ in the group linear space LG as:

ḡS = Sg, for all S ∈ LG. (25)

The group formed by the collection of the operators g is called the intrinsic group
G of the group G.

The most important property of intrinsic groups is that the operation from
the ‘laboratory’ group G and corresponding intrinsic group commute:

[G,G] = 0. (26)

It means that intrinsic properties defined by an intrinsic group ( intrinsic group
acts in intrinsic frame) are independent of the corresponding properties in the
laboratory frame.

So defined intrinsic groups are anti-isomorphic to their laboratory partners,
where the anti-isomorphism is given by:

φG : G → G, where φG(ḡ) = g and φG(ḡ1ḡ2) = g2g1. (27)

It means that both structure are very similar and most properties of laboratory
groups can be directly used for intrinsic groups.

As an example, let us write down the action of the intrinsic rotationsR(ḡ1, ḡ2) ∈
SO(3) in the space of functions of intrinsic variables [11]:

R̂(ḡ1, ḡ2)f(α,Ω) = f({ˆ̄g1α},ΩφG(ḡ2)−1), (28)

where ḡ1, ḡ2 ∈ SO(3) and

ˆ̄g1αλμ =
∑
μ′
Dλ

μ′μ(φG(ḡ1)−1)αλμ′ , (29)

On the other hand, not all rotations ḡ ∈ SO(3)

ḡ : (α,Ω) → (α′,Ω′) (30)

are allowed in the intrinsic frame. The rotations R̂(ḡ1, ḡ2) ∈ SO(3) are allowed
if they do not break constraints defining the intrinsic variables

Fk(ḡ1α,Ωḡ2−1) = 0, where k = 1, 2, 3, . . . , r. (31)

For instance, for “principal axes Bohr’s quadrupole collective variables” the al-
lowed intrinsic rotations R̂(ḡ1, ḡ2) ∈ SO(3) are those which leave invariant the
condition defining the intrinsic frame

R̂(ḡ1, ḡ2)α2±1 = 0 and R̂(ḡ1, ḡ2)α22 = R̂(ḡ1, ḡ2)α2−2. (32)
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The conditions (32) do not restrict action of the group SO(3) onto rotational de-
grees of freedom Ω. It is required property to allow for correct definition of an-
gular momentum operators. The operations R̂(ḡ1, ḡ2) change both an orientation
of a nucleus and the intrinsic frame, simultaneously. Rotations of the variables
α themselves “move” the frame from its initial position in respect to the body,
but, by definition of intrinsic frame this is not possible. One can check, that the
allowed rotations furnish the octahedral point group Oα ⊂ SO(3)α which acts
only on the variable α.

In the following, if needed, we will add the extra labels to names of groups
which show the variables on which the group acts, e.g. D4h,z;Ω – the intrinsic
group D4h;z has the fourfold symmetry axis in the z directions and acts on the
rotational degrees of freedom Ω.

The transformations from laboratory to intrinsic frame are usually not re-
versible functions. There are possible two scenarios to overcome this undesired
property:

(A) One can define the appropriate region of intrinsic collective variables in
which the transformation from the laboratory to intrinsic frame is a one-
to-one function (it leads often to problems with physical interpretation,
e.g. restriction of Euler angles to subrange).

(B) One can work in the whole range of variables, however, one needs to
restrict the space of states to the subspace of appropriate periodic functions
(symmetrization of eigenstates).

To explain the second idea, which seems to be more physical, it is useful to
define a group of intrinsic transformations h̄ ∈ Gs:

(α,Ω) h̄−→ (α′,Ω′) (33)

where α = {αλμ} and which leave invariant the corresponding laboratory coor-
dinates:

α(lab)(α′,Ω′) = α(lab)(α,Ω). (34)

The group Gs is called the symmetrization group.
The required symmetrization condition for quantum states is given by their

invariance in respect to this symmetrization group, i.e., for all h̄ ∈ Gs:

h̄Ψ(α,Ω) = Ψ(α,Ω) (35)

In this way we can work with periodic functions which repeat their properties
for physically equivalent sets of intrinsic variables.

4 Group Orbits and Uniqueness Problem

It turns out that a good tool for analysis of collective manifold are orbits of
the symmetrization group. It is due to the fact, that a symmetrization group
decomposes the collective manifold into orbits of physically equivalent points.
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Let us denote by Xα(lab) and XαΩ the configuration spaces of laboratory
collective variables and intrinsic variables, respectively. To be illustrative, let
us consider an example of standard Bohr’s shape intrinsic variables (α20, α22)
equivalent to known Bohr deformation parameters (β, γ).

In this case, the symmetrization group O (inversion dropped) is generated
by:

ḡ1 = Ĉ2y, ḡ2 = Ĉ4z , ḡ3 = ḡ(π/2, π/2, π) = Ĉ−1
3δ , (36)

where the Schönflies notation is used, i.e., Ĉnw denotes the rotation about the
axis w through the angle 2π/n. The direction are chosen as in the appendix D
of [6].

The orbit of the collective manifold point (β0, γ0,Ω0) defined as:

orb(O;β0, γ0,Ω0) = {ḡ(β0, γ0,Ω0) : ḡ ∈ O} (37)

consists of 24 elements which give the same laboratory deformation parameters.
Here, the action of the intrinsic octahedral group can be written as:

ḡβ = β, ḡγ ∈ {±γ, ±(γ − k
2π
3

)}, ḡΩ = Ωg. (38)

The subrange of intrinsic variables in which the transformation from laboratory
to intrinsic frame is unique can be constructed as quotient of the XαΩ manifold
and the set of orbits orb(O) of the octahedral group:

XC
αΩ = XαΩ/orb(O). (39)

The quotient is defined as a family of cosets which are determined by the modulo
orb(O) equivalence relation.

Two elements (β′, γ′,Ω′) and (β′′, γ′′,Ω′′) are called equivalent modulo
orb(O) if and only if they belong to the same orbit. It means, they represent
the same point in the laboratory collective variable space. More formally:

(β′, γ′,Ω′) = (β′′, γ′′,Ω′′) (orb(O)) (40)

if there exists (β, γ,Ω), that

(β′, γ′,Ω′), (β′′, γ′′,Ω′′) ∈ orb(O;β, γ,Ω). (41)

However, in this collective space XC
αΩ there is a problem with angular momen-

tum definition because in the configuration space XC
αΩ the Euler angles are re-

stricted to a subrange and not all orientations are available.
A solution of this problem is to join some orbits to recover full range of

angles. In this case one can choose the maximal rotation group acting on vi-
brational degrees of freedom Oα × 1̄ which do not touch the orientation of the
nucleus. In this case the orbit has only 6 elements:

orb(Oα × 1̄;β0, γ0,Ω0) = (42)

{(β0, γ,Ω0) : γ = ±γ0,±(γ0 −
2π
3

),±(γ0 −
4π
3

)} (43)
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Figure 4. Six equivalent regions, each consist of 4 orbits of the symmetrization group O.

and the collective configuration space used in the Bohr model is given by the
quotient:

XBohr
αΩ = XαΩ/orb(Oα × 1̄). (44)

However, as a result we get again not-invertible (1 → 6)-transformation from
the laboratory to intrinsic frame, as shown in Figure 4. It means that, in fact, we
only diminished level of non-uniqueness, but still we have to symmetrize states
in respect to the symmetrization group. For example, for pure quadrupole case
the Bohr Hamiltonian can be rewritten as

ĤBohr = Ĥvib(β, γ) + Ĥrot(Ω) + Ĥvr(β, γ,Ω) (45)

where the vibrational part is given by

Ĥvib = − �
2

2B

{
1
β4

∂

∂β
β4 ∂

∂β
− 1
β2 sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+ β2

}
+ VB (46)

and the rotational term can be expressed as quantum rigid rotator

Ĥrot =
1
2

∑
k=1,2,3

J2
k

Jk
. (47)

The resulting coupling term is of the form:

Ĥvr =
1

8β4

∑
k=1,2,3

J2
k

sin2(γ − (2π/3)k)
− Ĥrot. (48)
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A. Góźdź, A. Dobrowolski, A. Pȩdrak, A. Szulerecka, A. Gusev, S. Vinitsky

This form of the Hamiltonian is more intuitive and better for symmetry analysis.
One can easily check that the vibrational sub-Hamiltonian Ĥvib(β, γ) has an

octahedral symmetry Oh;α:

Sym(Ĥvib) = Oh;α. (49)

On the other hand, the rotational sub-Hamiltonian has dihedral symmetry D2h;Ω:

Sym(Ĥrot) = D2h;Ω. (50)

because it is a function of D2h;Ω invariants. The coupling term has more com-
plicated symmetry:

Sym(Ĥvr) = Oh;α × D2h;Ω 
⊃ Oh. (51)

The resulting symmetry is the dihedral group D2h acting simultaneously on vi-
brational and rotational variables. It means that the Bohr Hamiltonian is not
invariant in respect to the required symmetrization group. In this context it is
unphysical. This requires a symmetrization procedure, as it mentioned earlier in
the paper. More detailed description of the problem and its solution is considered
in [7].

5 The Mass Parameters Problem

In Bohr type collective models a collective Hamiltonian contains usually two
main ingredients: collective kinetic energy determined by mass parameters and
potential. The potential is rather well determined physical measurable quantity.
On the other hand, mass parameters are not well defined quantum objects but
they play an important role in structure of Bohr type collective models.

Mass tensor is usually considered to be metric tensor BBohr
k1,k2

(q) ≡ ηkk′ (q)
in collective variables {qk} manifold. On the other hand, the metric tensor can
be written in any arbitrarily chosen variables

η′kk′ (u) =
∑
k1,k2

∂qk1

∂uk

∂qk2

∂uk′B
Bohr
k1,k2

(q). (52)

However, after the appropriate substitution of new variables in the harmonic
oscillator Hamiltonian this new collective Hamiltonian give nothing new but
again, another representation of 5-dimensional harmonic oscillator.

These considerations leads to the following question : can we replace ηkk′ (q)
by any arbitrary tensor which can be considered as metric tensor, e.g. a cranking
mass tensor ?

In general, the answer seems to be negative. The correct tensor metric has
to conserve the SO(3) tensor structure of collective variables and at the same
time transformation (symmetry) properties. To reach this goal some new collec-
tive variables uk should exist in which the metric tensor determined by cranking
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mass tensorB(crank)
kk′ (u) has to be equal to the metric tensor (52) which is equiv-

alent to the tensor (19) resulting from the structure of rotation group:

B
(crank)
kk′ (u) =

∑
k1,k2

∂qk1

∂uk

∂qk2

∂uk′B
Bohr
k1,k2

(q). (53)

It means, to conserve the appropriate structure of tensor collective variables, as
a result, we have to obtain again the kinetic energy with constant mass. On the
other hand, this is, in general, not possible – differential geometry shows that
not all metric tensors can be transformed to Cartesian metric.

Conclusion: Using of cranking masses B(crank)
kk′ and at the same time mi-

croscopic potential energy Vcoll, can leads to new collective Hamiltonian which
is not equivalent to any collective Hamiltonian with constant masses. However,
in many cases, such model also provide a new structure of collective coordi-
nates which properties can be different from their initial features (meaning and
transformation properties of variables can be changed). In this way one obtains
a new class of collective models which cannot be derived from the five dimen-
sional Harmonic oscillator.

This result shows that in such cases one needs to analyze carefully not only
the collective Hamiltonian itself but also structure of collective space which can
be not necessarily equivalent to structure of five dimensional Harmonic oscillator
space.

There are also other problems concerning structure of Bohr type collective
spaces which should be revisited, e.g. how the collective manifold is changing
when one omits some of collective variables. It is typical, practical problem
in many models considered in literature. Another, important problem is related
to more reach structure of collective space represented by intrinsic collective
variables than the corresponding laboratory space.

This and other similar problems requires further investigations.
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