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Abstract. Nuclear shapes are investigated within the framework of the two-
fluid Interacting Vector Boson Model (IVBM). The latter possesses a rich alge-
braic structure of physically interesting subgroups that define its distinct exactly
solvable dynamical limits. Their classical images are obtained by means of the
coherent state method using a variation without and with angular momentum
projection. The results obtained show that the angular momentum projection
turns out to be crucial for obtaining stable triaxial shapes within the framework
of the IVBM in its SU∗(3) limit without breaking the exact dynamical symme-
try.

1 Introduction

Nuclear shapes and phase transitions between them are the subject of great in-
terest in the last years, both from experimental and theoretical points of view
(see e.g. [1]). The introduction of the concept of critical point symmetry [2] has
recalled the attention of the community to the topic of quantum phase transitions
in nuclei. Different models have been used to study nuclear shapes and quan-
tum phase transitions in different many-body systems, such as atomic nuclei [3],
molecules [4], [5], atomic clusters [6], and finite polymers. Among these mod-
els, those based upon algebraic Hamiltonians play an important role. A nice
feature of the algebraic models is the occurrence of phases connected to specific
geometric configurations of the ground state, which arise from the occurrence of
different dynamical symmetries. Thus, different shapes or phases in algebraic
models are related to all possible breakings of the dynamical symmetry group.

The phase structure of the Interacting Vector Boson Model (IVBM) [7] has
been investigated in Ref. [8]. There different shapes corresponding to its various
dynamical limits have been obtained and quantum phase transitions between
them analyzed. In [9] a new dynamical symmetry, based on the SU∗(3) algebra,
has been introduced for the description of triaxial nuclei. It was shown that the
addition of two-body perturbation terms (e.g. Majorana interaction, an O(6)
term) to the SU∗(3) Hamiltonian produces stable triaxial minima, giving rise to
the triaxial shapes [9].

In the present paper we reinvestigate the nuclear shapes that might appear
in the IVBM phase diagram from a slightly different perspective with the em-
phases of obtaining triaxial shapes. For this purpose we study the nuclear shapes
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appearing in the IVBM using a variational procedure without and with angu-
lar momentum projection. We show that the usage of a more accurate angular
momentum projection variational procedure changes the topology of the cor-
responding potential energy surface in the SU∗(3) limit, giving rise to stable
triaxial shapes obtained in the present approach without breaking the exact dy-
namical symmetry of the model.

2 The Model

It was suggested by Bargmann and Moshinsky [10], [11] that two types of
bosons are needed for the description of nuclear dynamics. It was shown there
that the consideration of only two-body system consisting of two different in-
teracting vector particles will suffice to give a complete description of N three-
dimensional oscillators with a quadrupole-quadrupole interaction. The latter can
be considered as the underlying basis in the algebraic construction of the phe-
nomenological IVBM [7].

The algebraic structure of the IVBM is realized in terms of creation and an-
nihilation operators of two kinds of vector bosons u†m(α), um(α) (m = 0,±1),
which differ in an additional quantum number α = ±1/2 (or α = p and n)−the
projection of the T−spin (an analogue to the F−spin of IBM-2 or the I−spin
of the particle-hole IBM).

All bilinear combinations of the creation and annihilation operators of the
two vector bosons generate the boson representations of the non-compact sym-
plectic group Sp(12, R):

FL
M (α, β) =

∑
k,m

CLM
1k1mu

+
k (α)u+

m(β), (1)

GL
M (α, β) =

∑
k,m

CLM
1k1muk(α)um(β), (2)

AL
M (α, β) =

∑
k,m

CLM
1k1mu

+
k (α)um(β), (3)

where CLM
1k1m, which are the usual Clebsch-Gordan coefficients for L = 0, 1, 2

and M = −L,−L+ 1, ...L, define the transformation properties of (1),(2) and
(3) under rotations.

Symplectic dynamical symmetries allow the change of the number of bosons,
elementary excitations or phonons N , providing for richer subalgebraic struc-
tures and larger representation spaces to accommodate more structural effects.
Dynamical symmetry group Sp(12, R) contains both compact and non-compact
substructures, defined by different reduction chains [12]. Each chain will corre-
spond possibly to different shape.

3 The IVBM Coherent States

There are many approaches which allow the association of a certain geometry
to any abstract algebra, but for algebraic models, this can be achieved with the
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theory of the coherent (or intrinsic) states. The expectation value of the Hamil-
tonian in the ground coherent state is refereed to as its classical limit.

The standard approach to obtain the geometrical properties of the system is
to express the collective variables in the intrinsic (body-fixed) frame of refer-
ence. We use the following IVBM coherent states

| N ; r1, r2, θ 〉 =
1√
N !

(B†)N | 0 〉 (4)

with

B† =
1√

r21 + r22

[
r1p

†
z + r2(n†

xsinθ + n†
zcosθ)

]
. (5)

The geometric properties of the ground states of nuclei within the framework of
the IVBM can then be studied by considering the energy functional

E(N ; r1, r2, θ) =
〈N ; r1, r2, θ|H |N ; r1, r2, θ〉
〈N ; r1, r2, θ|N ; r1, r2, θ〉

. (6)

By minimizing E(N ; r1, r2, θ) (6) with respect to r1, r2, and θ , ∂E/∂r1 =
∂E/∂r2 = ∂E/∂θ = 0, one obtains the equilibrium ”shape” corresponding
to any boson Hamiltonian, H . It is convenient to introduce a new dynamical
variable ρ = r2/r1 which together with the parameter θ determine the corre-
sponding ”shape”.

4 Nuclear Shapes

In the present section the classical limits of the model Hamiltonians representing
different dynamical symmetries of the IVBM are given.

4.1 The Up(3) ⊗ Un(3) limit

We consider the Hamiltonian that is linear combination of first order Casimirs
of Uτ (3) (τ = p, n):

HI = εpNp + εnNn. (7)

The Hamiltonian (7) can be rewritten in the form

HI = εpN + εNn, (8)

where ε = εn − εp. The first term in (8) can be dropped since it does not con-
tribute to the energy surface. Thus, the Hamiltonian determining the properties
of the system in the Up(3) ⊗ Un(3) limit is just

HI = εNn. (9)

The expectation value of (9) with respect to (4) gives the energy surface

E(N ; ρ) = ε
Nρ2

1 + ρ2
. (10)
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The scaled energy ε(ρ) = E(N ; ρ)/εN in the Up(3) ⊗ Un(3) limit is given
in Figure 1. From the latter we see that the minimum is at ρ0 = 0 and is
θ−independent. This is the vibrational limit of the model and corresponds to
the case of two uncoupled oscillators. The inclusion of higher-order terms in Np

and Nn will give rise to an anharmonicity.

Figure 1. The scaled energy surface ε(ρ) in the Up(3) ⊗ Un(3) limit.

4.2 The O(6) limit

The Hamiltonian describing the O(6) (or γ−unstable) properties can be written
down through theO(6) pairing operatorP † = 1

2 (p† ·p†−n†·n†) in the following
form

HII =
4k′

N − 1
P †P. (11)

In (11) the P †P operator is used instead of the quadratic Casimir operator
C2[O(6)] ofO(6) because of their linear dependence, i.e. C2[O(6)] = −4P †P+
N(N + 4).

Taking the expectation value of (11) one obtains the energy surface

E(N ; ρ) = k′N
[
1 − ρ2

1 + ρ2

]2

, (12)

which does not depend on θ (θ−unstable) and has a minimum at ρ0 
= 0 (|ρ0| =
1). It corresponds to a deformed ”γ−unstable” (in IBM terms) rotor.

We want to point out that actually there are two O±(6) algebras, given in
Ref. [8], that are isomorphic and have the same eigenspectrum but differ through
phases in the wave functions resulting into different energy surfaces. The energy
surface (12) corresponds to the O−(6) limit. The other, O+(6), limit is not
physically important since its energy surface is just a constant. The scaled energy
surface ε(ρ) in the O−(6) limit is given in Figure 2.
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Figure 2. The scaled energy surface ε(ρ) in the O(6) limit.

4.3 SU(3) limit

In this case we study the Hamiltonian

HIII = − k

N − 1
Q ·Q, (13)

where the operator Q = Qp + Qn is the quadrupole generator of SU(3) of the
combined two-fluid system. The operators Qp and Qn are defined through the
operators (3) as Qp =

√
6A2

M (p, p) and Qn =
√

6A2
M (n, n), respectively. The

expectation value of (13) with respect to (4) gives

E(N ; ρ, θ) = −kN 2
3

[
1 + ρ4 + 1

2ρ
2(3cos2θ + 1)

(1 + ρ2)2
+ 1

]
. (14)

In Figure 3 we plot the scaled energy surface ε(ρ, θ) = E(N ; ρ, θ)/kN in the
SU(3) limit.

Figure 3. The scaled energy surface ε(ρ, θ) = E(N ; ρ, θ)/kN in the SU(3) limit.

In order to see to what geometry corresponds the energy surface obtained in
this case, we need the relation of the two IVBM parameters ρ and θ with the
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commonly used parameters β and γ of the geometrical collective model. In the
CS of the IVBM, the effective γeff deformation can be defined in the usual way
as [13]:

tan γeff =
√

2
〈Q2〉
〈Q0〉

, (15)

where 〈Qμ〉 denotes the expectation value of the μth component of the quadrupole
operatorQ. The result is

tan γeff =
√

3
ρ2sin2θ

2 + ρ2

2 (3cos2θ + 1)
. (16)

From Figure 3 we see that that the minimum is at ρ0 = 0, which corresponds to
γeff = 00. Taking into account the definition of ρ, we see that the ground state
boson condensate (4) takes the form

| N ; ρ = 0 〉 =
1√
N !

(p†z)
N | 0 〉. (17)

Then the effective β deformation parameter will be proportional to the expecta-
tion value of the intrinsic quadrupole moment Q0(p) of the p-system:

βeff  〈Q0(p)〉 =
2√
6
> 0. (18)

The values γeff = 00 and βeff > 0 correspond to a prolate shape. Geometri-
cally this corresponds to an axially deformed rotor.

4.4 SU∗(3) limit

This limit is appropriate for the case when the one type of particles of the two-
component system is particle-like and the other is hole-like.

The SU∗(3) dynamical symmetry can be studied through the Hamiltonian

HIV = − k′

N − 1
Q ·Q, (19)

where Q = Qp −Qn [9]. The energy surface corresponding to it is given by

E(N ; ρ, θ) = −k′N 2
3

[
1 + ρ4 − 1

2ρ
2(3cos2θ + 1)

(1 + ρ2)2
+ 1

]
, (20)

and is shown in Figure 4. Similarly, one concludes that the energy surface of
the SU∗(3) limit is also associated with a prolate shape (βeff > 0, γeff = 00).
Thus, geometrically this limit also corresponds to an axially deformed rotor.

It turns out that the addition of two-body perturbation terms (e.g. Majo-
rana interaction, anO(6) term) to the model SU∗(3) Hamiltonian (19) produces
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Figure 4. The scaled energy surface ε(ρ, θ) = E(N ; ρ, θ)/k′N in the SU∗(3) limit.

stable triaxial minima, giving rise to the triaxial shapes [9]. Recall that stable tri-
axial shapes are obtained in the framework of IBM by adding higher-order terms
to the model Hamiltonian [14], [15] or by the introduction of g-boson [16], [17]
(sdg-IBM with the U(15) dynamical symmetry group). Triaxial shapes are ob-
tained also in the IBM-2 with U(6)⊗U(6) algebraic structure where the analysis
of the nuclear shapes and the quantum phase transitions between them involve
more control and order parameters [1], [18], [19], [20].

Finally, we want to point out that that we can obtain oblate equilibrium
shapes in the two SU(3) and SU∗(3) limits simply by exchanging the x and
z axes, which were actually considered in Refs. [8], [9].

5 Angular Momentum Projected Energy Surfaces

It is well known that the intrinsic state defined by Eq.(4) does not have good
angular momentum. So a more accurate procedure will be first to project a
condensate wave function with a good angular momentum and then to perform
the variation.

The projected ground state energy which should then be minimized is [21],
[22]:

Epr(N ; ρ, θ) =
〈N ; ρ, θ|HPL=0

00 |N ; ρ, θ〉
〈N ; ρ, θ|PL=0

00 |N ; ρ, θ〉 , (21)

where the projection operator is [21], [23]:

PL
MK =

2L+ 1
8π2

∫
DL∗

MKR(Ω)dΩ. (22)

R(Ω) = e−iαJze−iβJye−iγJz is the rotation operator which rotates the system
through the three Euler angles Ω = (α, β, γ), andDL

MK is a WignerD-function.
In Figures 5−7 we plot the projected energy surfaces corresponding to the

three different dynamical symmetry limits SU(3), SU∗(3) and O(6) of the
IVBM.
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Figure 5. (Color online) Projected energy surface ε(ρ, θ) = Epr(N ; ρ, θ)/kN as 3-
dimensional and contour plots corresponding to the Hamiltonian (13) of the SU(3) limit.
For the contour plot only the region ρ > 0 is depicted.

Figure 6. Projected energy surface ε(ρ, θ) = Epr(N ; ρ, θ)/k′N as 3-dimensional and
contour plots corresponding to the Hamiltonian (19) of the SU∗(3) limit. For the contour
plot only the region ρ > 0 is depicted.

From Figures 5-6 we see that the angular momentum projection changes
the topology of the corresponding potential energy surfaces in both SU(3) and
SU∗(3) limits. In both dynamical symmetries we see clearly separated minima
at ρ0  0.9−1.1 and θ0  900. Actually, the minima are obtained at ρ0 = 1 and
θ0 = 900. In the SU(3) limit this corresponds to γeff = 600 (an oblate shape),
whereas for the SU∗(3) one obtains γeff = 300 corresponding to the case
of maximum triaxiality. As can be also seen the obtained minima are slightly
unstable with respect to ρ.

Finally, we consider the projected energy surface in theO(6) limit, shown in
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Figure 7. A contour plot of the projected energy surface ε(ρ, θ) in the O(6) limit. Only
the region ρ > 0 is depicted.

Figure 7. We see that although the minimum is at ρ0 = 1, the angular momentum
projection slightly disturb the typical θ-unstable energy surface of this limit.

6 Conclusions

In the present paper the possible nuclear shapes are investigated within the
framework of the two-fluid Interacting Vector Boson Model. The latter pos-
sesses a rich algebraic structure of physically interesting subgroups that define
its distinct exactly solvable dynamical limits. Their classical images are ob-
tained by means of the coherent state method using a variation without and with
angular momentum projection. The results obtained show that the angular mo-
mentum projection turns out to be crucial for obtaining stable triaxial shapes
within the framework of the IVBM in its SU∗(3) limit without breaking the
exact dynamical symmetry.
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