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Abstract. Correspondence between the SO(8) pairing basis and Elliott’sSU(3)
basis, that describes collective rotation of nuclear systems with quadrupole de-
formation is established on the basis of their complementarity to the same LS
coupling chain of the shell model number conserving algebraU(4Ω) ⊃ UL(Ω)⊗
UST (4). The classification of the basis states for 4 nucleons in the ds shell along
both dynamical symmetries is presented as an example and is applied to study
the interplay between the pairing and quadrupole interactions in the Hamilto-
nian of the Pairing-plus-Quadrupole Model, containing both of them as limiting
cases. Reasonable choices of values for the interaction parameter strengths of
20Ne are obtained on the basis of comparing the theoretically obtained behavior
of the spectrum with the experimental values for the energies of the low laying
states.

1 Introduction

It has been understood since the early years of the development of the nuclear
structure physics, that the pairing [1] and the quadrupole-quadrupole interac-
tions [2] are the most important short- and long-range interactions that have to
be taken into account in the shell-model description of the nuclear systems [3].
Being with different range of action on the nucleons in the valence shells it is
quite clear that these interactions actually influence the behavior of the systems
in different parts of the shells. The pairing interaction is responsible for the
appearance of the pairing gap in the nuclei with only a few nucleons after the
closed shells and is therefore associated with the spherical shape of the sys-
tem. The quadrupole-quadrupole interaction dominates in the nuclei near the
mid-shells and so introduces deformation, which is related to the appearance of
rotational sequences in the nuclear spectra. Hence in some nuclei each of these
interactions could reproduce relatively well the observed behavior of the nuclear
system, but in most of the cases the study of the relationship between them is
of great importance. This is the main motivation for the development of the
Pairing-plus-Quadrupole Model (PQM) [4–6] for the description of the nuclear
excitation spectra. It is most successfully done in the framework of the basic
shell model representation of the employed interactions, but the applications to
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real nuclear systems are rather complicated and cumbersome, due to the enor-
mous dimensionality of the basis space in particular for the heavy nuclei. It is
already clearly proven that such a problem is easily avoidable by employing a
group-theoretical approach [7], which introduces symmetry principles useful in
particular for reducing the basis spaces and in the calculation of matrix elements
of transitional operators.

In this work we present such an approach by considering the basic inter-
actions of the PQM as invariants of two respective algebras, which reduce the
general symmetry of the shell model in a dynamical way. At the same time
the two so defined dynamical symmetry chains are both complementary to the
Wigner’s spin-isospin SUST (4) symmetry, which establishes the direct connec-
tion between these two limiting cases. The latter allows for the investigation of
the competing and complementarity features of the pairing and quadrupole in-
teractions in the description of the realistic nuclear systems in the lower shells
up to mass numbersA ∼ 100.

2 The Many-Particle Shell-Model Scheme

The many-particle shell model wave functions are constructed by filling the
single-particle orbitals of the valence shells with nucleons, taking into account
the Pauli principle [7]. The later constrain is imposed by requiring an antisym-
metrization of the total wave function, containing the product of the spatial, spin
and isospin parts. In general, this condition and the complementarity of the par-
ticle permutation symmetry group and the unitary transformation on the state
orbitals [8], allows the use of the simpler case of U(4Ω) for the classification of
the m− particles’ wave functions. In U(4Ω) the number 4 stands for the dimen-
sionality of the spin-isospin space and Ω =

∑
i(2li +1) is the dimensionality of

the considered shell-model valence space, generated by the LS-coupling of m
nucleons in the l1, l2 . . . orbits of the considered shells.

As a result, the antisymmetric irreducible representations of U(4Ω) for m
particles, labeled by the Young diagrams {1m} can be further partitioned into
spin-isospin and spatial parts

U(4Ω) ⊃ UST (4) ⊗ U(Ω) (1)

{1m} {f̃} {f}

under the condition that each of the possible irreps {f} ≡ {f1, f2, f3, f4} (f1 ≥
f2 ≥ f3 ≥ f4) and {f̃} ≡ {f̃1, f̃2, f̃3, f̃4}, where f̃1 ≥ f̃2 ≥ f̃3 ≥ f̃4 of
the two complementary groups UST (4) and U(Ω) respectively are conjugated
to each other by interchange of the rows and columns in their respective Young
tableaux. Consequently both representations can be obtained from each other.
Since they are contained in the simple representation {1m} with m =

∑
i f̃i

shell model wave functions are only labeled with the number of particles m in
the valence shell.
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2.1 The Spin-Isospin SUST (4) Symmetry

As suggested by Wigner [9], the invariance of the nuclear forces in respect to
rotations in spin and isospin spaces is introduced through the Lie algebra of
SUST (4), whose representations {f ′} ≡ {f1 − f2, f2 − f3, f3 − f4} are conju-
gated and can be obtained by the representations {f} of U(Ω). It is obvious that
the energy of the nuclear states strongly depends on these quantum numbers.

Wigner’s supermultiplet model is actually the nuclear LS-coupling scheme
[7], [10], which employs the reduction

SUST (4) ⊃ SUS(2) ⊗ SUT (2),
{f̃} S T (2)

that gives the total spin S =
∑

i si and isospin T =
∑

i ti (i enumerates the
considered particles) values of the states wave functions, which together with
the orbital angular momentum L =

∑
i li of SOL(3) are good quantum num-

bers in this case. Further, L and S are coupled to total angular momentum
J = L + S. Using the isomorphism of the algebras SUST (4) ∼ SOST (6),
SUS(2) ∼ SOS(3) and SUT (2) ∼ SOT (3), another shell-model-reduction
chain equivalent to the chain (2) can be identified [11]:

SUST (6) ⊃ SOS(3) ⊗ SOT (3)
[P1, P2, P3] S T (3)

and used in a conjunction with the spatial reduction of U(4Ω) in convenient
cases, which will be considered further. We should point out, that the SUST (4)
symmetry is broken in a non-dynamical way by the Coulomb and the l.s interac-
tion [10] in the nuclear mean field approach. The role of both of these increases
with the nuclear mass number, but the considered LS-coupling scheme is still
applicable to nuclei up to mass A ≈ 100.

While in this way the spin S and the isospin T of the system are specified,
there is no general rule for obtaining the values of the orbital angular momentum
L, contained in the irreps {f}, since the reduction U(Ω) ⊃ SOL(3) is not a
canonical one.

2.2 Rotations and the SU(3) Symmetry

Elliott’s SU(3) model [2] provides an elegant and analytically solvable way for
obtaining the missing labels in the reduction of the spatial part of the Wigner’s
SUST (4) shell model classification to the orbital angular momentum L, by in-
troducing the reduction [12]:

U(Ω) ⊃ SU(3) ⊃ SO(3)
{f} α (λ, μ) K L (4)

where α indicates the multiplicity of the SU(3) representation (λ, μ) in the
U(Ω) representation {f}. The SU(3) in (4) is generated by the components
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of the quadrupole operator:

Qμ =
∑

l

√
8(2l+ 1)(a†l 1

2
1
2
× ãl 1

2
1
2
)
(200)

(μ00)
(5)

and the orbital momentum operator

Lμ =
∑

l

√
4l(2l+ 1)(l + 1)/3(a†l 1

2
1
2
× ãl 1

2
1
2
)
(100)

(μ00)
, (6)

which are presented in a second quantized form. They act in a single valence
shell labeled by l and the bracket denotes coupling in the angular momentum,
spin and isospin (LST ). In addition, the model assumes that the long range
residual interaction has a quadrupole character and the Hamiltonian can be writ-
ten as:

Hrot = H0 +
1
2
χQ.Q, (7)

where Q.Q = 4C2
SU(3) − 3L2 and the eigenvalue of the second invariant of

SU(3) is C2
SU(3) = λ2 + λμ + μ2 + 3(λ + μ). Obviously (7) gives rise to a

rotational spectrum of the type L(L+1). The chain (4) is a classical example of
dynamical symmetry breaking of the degeneracy within the U(Ω) or SUST (4)
by the quadrupole interaction. In this way the rotational states are labeled by the
quantum numbers of the representations of the algebras in the chain (4):

|Ψr〉 ≡ |{f}, α(λ, μ)KLM〉 ≡ |m,α(λ, μ)KLM〉. (8)

and are obtained in the context of the shell model [10]. Since Elliott’s SU(3)
model starts with the Wigner’s supermultiplet classification, it also breaks down
from the spin-orbit term in the nuclear mean field, and causes a considerable
rearrangement of the single-particle levels. The model could be applied suc-
cessfully mainly for nuclei in the ds and fp shells. For treating heavier systems
several more refined approaches [10], like the pseudo-spin symmetry [7] have
been employed.

2.3 Total (Isoscalar plus Isovector) Pairing Basis

Another way to reduce the multiplicity of the spatial shell-model algebra U(Ω)
to the angular momentum algebra SOL(3) in the LS-coupling scheme is to use
the reduction chain:

U(Ω) ⊃ SO(Ω) ⊃ SOL(3)
{f} [μ̃] β L (9)

which can easily be realized using the basic assumption that the fundamen-
tal representation {1}U(Ω) is composed by the representations (l1, l2, . . . lr) of
SOL(3) for nucleons occupying the orbits l1, l2, . . . lr. Then by using the stan-
dard methods for the decompositions U(n) ⊃ O(n) and O(n) ⊃ O(n − 1) [8]
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one obtains the values of the angular momentum operatorsL and their multiplic-
ity β. Hence this reduction explicitly depends on the the l− orbits appropriate
for the nucleus under consideration and could be applied in one or several orbits.

Now we turn to another important aspect of this reduction, namely its rela-
tion to the description of pairing phenomena in the framework of the shell model
algebras. It is proven in [13] that the SO(Ω), appearing in the U(Ω) representa-
tion space, restricted by the condition to be in a direct product with the SUST (4)
algebra is complementary to the SO(8) algebra. Because of this they both are
labeled by the same quantum numbers: v, [p1, p2, p3] or [μ] = [μ1, μ2, μ3, μ4]
with μ1 ≥ μ2 ≥ μ3 ≥ μ4 ≥ 0, where v =

∑
i μi is the seniority quan-

tum number for SO(Ω) and SO(8). Using the complementarity of U(Ω) and
SUST (4) ∼ SOST (6) (1), (3) and SO(Ω) and SO(8) the basis states in the
reduction to the angular momentum subgroup SOL(3) could be labeled as

|Ψp〉 ≡ |{f}, v, [p1, p2, p3], βLM〉 ≡ |m, v, [p1, p2, p3], βLM〉, (10)

where β gives the multiplicity with which the values of the angular momentum
L appear in the SO(8) representations v, [p1, p2, p3]. On the other hand the
SO(8) is the spectrum generating algebra for the isoscalar (T = 0) and isovector
(T = 1) pair creation and annihilation operators within the nuclear shell model:

S†
μ =

∑
l

βl

√
2l+ 1

2
(a†l 1

2
1
2
× ã†

l 1
2

1
2
)
(010)

(0μ0)
(11)

and

P †
μ =

∑
l

βl

√
2l + 1

2
(a†l 1

2
1
2
× ã†

l 1
2

1
2
)
(001)

(00μ)
, (12)

where βl = +1 or −1, and the bracket denotes coupling in the angular mo-
mentum, spin and isospin. Obviously these operators can be expressed in terms
of the Wigner’s SUST (4) generators. Physically relevant classification of the
SO(8) algebra that conserves spin and isospin are realized through three dy-
namical symmetries [13], [10]:

↗ SO(6) ↘
SO(8) → SOS(5)⊗ SOT (3) → SOS(3)⊗ SOT (3)

↘ SOT (5)⊗ SOS(3) ↗
(13)

which are used to obtain analytical solutions for either isoscalar or isovector
pairing interactions in the last two chains or in the first one for both of them with
equal strengths. In the latter case, using the relations for the Casimir invariants
of the algebras in (13), (2) and (3), the pairing interaction:

Vpair = −1
2

G{(1 − x)S†
μ.Sμ + (1 + x)P †

μ.Pμ}, (14)
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at x = 0 has the eigenvalues [13]:

Epair(m, v, [p], [P ], (ST )) =
1
2
{−1

4
(m− ν)(4Ω+12−m− ν)

− [p1(p1+4))+p2(p2+2)+p2
3]+[P1(P1+4))+P2(P2+2)+P 2

3 ]}, (15)

that do not depend explicitly on L, S and T . This also implies that the interplay
between the different types of pairings in the nuclear systems can be investi-
gated.

3 Unifying the Reductions of Shell-Model U(4Ω) Algebra

Summarizing the reduction of the shell model algebra U(4Ω) (1) into the spa-
tial and spin-isospin branches and their complementarity and taking into account
that the reduction of the spatial part U(Ω) to the SO(3) algebra of the angular
momentum, could be realized in two possible ways through the SU(3) algebra
(4) [7] and through the SO(Ω) ⇔ SO(8) (9) [13], both complementary to the
reduction of the Wigner’s supermultiplet model (2) [9], we can unify the consid-
ered above chains into a generalized reduction scheme of the type:

{1m} U(4Ω)
↓

(f̃} [U(Ω) ⊗ UST (4)] {f}
↓ ↘ α ↓

[μ̃] [SO(Ω) [SU(3) ⊗ SUST (4)] {f ′}
(Ω − ν

2 , [p]) ⇔ SO(8) (λ, μ) ∼ SO(6) [P ]
β ↓ ↙ K ↓
L [SOL(3) ⊗ SUS(2)] ⊗ SUT (2) S, T

↓ ↓
J SUJ(2) ⊗ SUT (2) T

(16)

Now we obtain the important result that the spatial subalgebra U(Ω) of the
shell-model algebra U(4Ω) contains two distinct dynamical symmetries defined
by the reduction chains -left branch (9) and middle branch (4). Both of them
are complementary to the Wigner’s supermultiplet (2) on the right-hand side of
the reduction scheme (16). As a result we obtain the residual interaction of the
system as:

Vres =
1
2
(1 − x)χQ.Q− 1

2
(1 + x)G(S†

μ.Sμ + P †
μ.Pμ), (17)

where at x = 1 we have pure pairing interaction with equal strengths of the
isoscalar and isovector terms, and at x = −1 the limiting case of pure quadrupole
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interaction is realized. At x = 0 we have both interactions mixed with their re-
spective strengths. This allows us to investigate the influence of these residual
interactions on the spectra in real nuclear systems, which will be presented fur-
ther in the applications. The residual interaction (17) at x = 0 defines the Hamil-
tonian H = H0 + Vres of the Pairing-plus-Quadrupole Model /PQM/ [14].

4 Relation Between the Basis States in the Pairing and Quadrupole
Limits

From the above generalized reduction scheme it could be seen that both chains
defining the reductions in the spatial part of the generalized scheme (16) deter-
mine full-basis sets and could be expressed through each other. Since the mi-
croscopic SU(3) model based on the three-dimensional harmonic oscillator has
a well-developed theory, including the Wigner-Racah algebra for the calculation
of matrix elements [15], [16] in the SU(3) basis and various successful appli-
cations in real nuclei [17], we choose to expand the states of the pairing basis
(10) with the quantum numbers {ν[p1, p2, p3]β} labeled by the set of numbers
{i} through the set of basis states (8) with the quantum numbers {α(λ, μ)K}
denoted as the set {j}:

|Ψp〉i ≡ |{f}, i, LM〉 =
∑

j

Cij |{f}, j, LM〉. (18)

As a result of the dynamical symmetry, the pairing interaction (14) is diagonal in
the pairing basis (10) with eigenvalues given by (15). Using its expansion (18)
in the SU(3) basis states and the diagonalization procedure for its matrix in the
SU(3) basis:

〈Ψp|Hpair|Ψp〉 = Epair(m, i, [P ], (ST ))
∑

j

C∗
jiCij . j〈Ψr|Ψr〉j︸ ︷︷ ︸ (19)

= 1

we obtain numerically the probability |Cij |2 with which the states of the SU(3)
basis enter into the expansion of the pairing basis. In this way we actually calcu-
late the transformation brackets between the two chains [18], which is of great
use when calculating the matrix elements of different operators in each of the
chains. In particular, since we do not have an explicit representation of the pair-
ing basis in terms of the fermion creation and annihilation operators we can use
the transformation brackets to calculate different matrix elements in it. This is
important for example for the calculation of transition probabilities. Also, this
expansion could help evaluate the importance (weight) of the different SU(3)
- states, when we need to impose restrictions on the basis because of computa-
tional difficulties.

The known relations of the SU(3) labels (λ, μ) and the β, γ shape variables
of the geometrical model can be used for the analysis of the deformations of the
pairing states, expressed through the respective SU(3) ones.
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5 Application of the Algebraic Construction in the Shell-Model
Theory for the Case of m = 4 (Four) Particles in the ds Shell

After presenting in short the algebraic realization of the dynamical symmetries
that appear in the microscopic shell model we would now like to exploit their
applications in realistic nuclear systems. We start with the first real test case for
the applications of the theory - the ds shell, which is the first one, where both
deformation and pairing phenomena play an important role [19], [20]. Our proof
of case example presents the simple but complete case of 4 particles in the ds

Table 1. The classification of the states of 4 particles in the ds shell (Ω = 6) according
to the reduction scheme (16).

U(6) SO(6) SOp(6) SU(3) SO(3) UST (4) SOP (6) SUS(2)×SUT (2)

{f̃} [μ] ν[p] (λ,μ) K L {f} [P ] (ST )

{14}15 [2] 2[13] (1, 2)15 1 1, 2, 3 {4}35 [23]35 (0, 0)1
(1, 1)9
(2, 2)25

{212}105 [31] 4[212] (0, 1)3 0 1 {31}45 [212]45 (1, 0)3
(2, 3)42 0 1, 3, 5 (0, 1)3

2 2, 3, 4 (2, 1)15
(5, 0)21 0 1, 3, 5 (1, 2)15
(3, 1)24 1 1, 2, 3, 4 (1, 1)9

[2] 2[13] (1, 2)15 0 1, 2, 3

{22}105 [0] 0[0] (0, 4)15 0 0, 2, 4 {22}20 [2]20 (2, 0)5
[12] 2[1] (2, 0)6 0 0, 2 (1, 1)9
[22] 4[2] (4, 2)60 0 0, 2, 4, 6 (0, 2)5

2 2, 3, 4, 5 (0, 0)1
(3, 1)24 1 1, 2, 3, 4

{31}210 [2] 2[13] (1, 2)15 1 1, 2, 3 {212}15 [12]15 (1, 0)3
[12] 2[1] (6, 1)63 1 1, 2, 3, 4, 5, (0, 1)3

6, 7
[212] 4[12] (4, 2)60 0 0, 2, 4, 6 (1, 1)9

2 2, 3, 4, 5
(2, 3)42 0 1, 3, 5

2 2, 3, 4
(3, 1)24 1 1, 2, 3, 4
(2, 0)6 0 0, 2

{4}126 [14] 4[0] (8, 0)45 0 0, 2, 4, 6, 8 {14}1 [0]1 (0, 0)1
(4, 2)60 0 0, 2, 4, 6

2 2, 3, 4, 5
[0] 0[0] (0, 4)15 0 0, 2, 4
[12] 2[1] (2, 0)6 0 0, 2
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shell, which allows us to study the PQM without any truncation of the model
space.

In Table 1, using the described reduction rules for the generalized reduc-
tion scheme given in (16), we present the classification of 4 particles (m = 4)
in the ds shell (Ω = 6). Since in this case the space dimension is only 6,
we do not employ the complementarity of SO(Ω) and SO(8) but go down
directly from SO(6) ⊃ SO(5) ⊃ SO(3) and along the first chain in (16).
In the first column of the table the U(6) spatial representations {f} conju-
gated to the ones of UST (4) are shown with their dimensionality, given by the
indexes next to the representation brackets. In the next column their reduc-
tion to the respective SO(Ω) ≡ SO(6) representations [μ] ∼ v[p] is given.
In the next, forth column the SU(3) irreps (λ, μ), contained in the {f} ir-
reps, are listed with their K,L,M content, which are obtained as well from
the SO(6) ⊃ SO(5) ⊃ SO(3) reduction. In the last three columns of the table
the allowed UST (4), SOP (6) and SUS(2) ⊗ SUT (2) irreps {f̃},[P ] and (S, T )
representations corresponding to the respective representation {f} of U(6) par-
ticles in the ds shell, are enumerated. All the possible five cases of 4 protons or 4
neutrons, 3 protons and 1 neutron and 3 neutrons and 1 proton and 2 protons and

Table 2. Decomposition of the pairing states of 2 protons + 2 neutrons in the ds shell in
terms of SU(3) basis states.

{i} ≡ {|ν[p][P ] >} Energy [MeV] |{j} ≡ {(λ, μ)L, S >} |Cij |2[%]

01 −16 (8, 0)0, 0 56.25
|0[0][0] > (4, 2)0, 0 6.94

(0, 4)0, 0 34.03
(2, 0)0, 0 2.78

02 −10 (4, 2)0, 0 77.78
|2[1][0] > (0, 4)0, 0 11.11

(2, 0)0, 0 11.11

21 −10 (8, 0)2, 0 83.39
|2[1][0] > (4, 2)2, 0 5.76

(0, 4)2, 0 6.65
(2, 0)2, 0 4.20

22 −10 (8, 0)2, 0 1.46
|2[1][0] > (4, 2)2, 0 72.50

(0, 4)2, 0 15.79
(2, 0)2, 0 10.25

41 −10 (8, 0)4, 0 40.86
|2[1][0] > (4, 2)4, 0 53.81

(0, 4)4, 0 5.33
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2 neutrons, which are defined by the respective values of T in the last column of
the table are obtained. For example, since for 4 protons we have T = 2, Tz = 2,
we should consider from U(4) irrep {4} the states with (S = 2, T = 2); from
{3, 1} with (S = 1, T = 2) and from the {2, 2} with (S = 0, T = 2). The case
of 3 protons and 1 neutron or 3 neutrons and 1 proton contains all the U(4) rep-
resentations with T = 2, Tz = ±1 and T = 1, Tz = ±1 respectively. The most
complex case is the one of 2 protons and 2 neutrons which contains all U(4)
representations, listed in the table. From Table 1 the correspondence between
the SO(6) representations v[p] and a respective set of SU(3) irreps (λ, μ) is
easy to be seen. Obviously, the pairing representations mix all the SU(3) irreps
belonging to their respective U(6) representations.

Using the expansion (18) and the eigenvalues (15) in the pairing basis (10)
from (19) we obtain the decompositions of the pairing states in terms of the
SU(3) basis states. Example of this decomposition of the first few low-lying
pairing states into SU(3) basis states is given in Table 2. From this decomposi-
tion one can extract information on the intrinsic deformation of the pairing states
through the content in percentage of the SU(3) states, which are clearly associ-
ated with the (βγ) variables of the Geometric Collective Model [21]. As could
be seen from Table 2 for the yrast states the prolate components (8, 0) and (4, 2)
play a dominant role, although for the ground state it is strongly mixed with the
oblate (0, 4) state.

Further, we study the interplay between the pairing and quadrupole interac-
tions in (17) for 4 particles of the same kind in the ds shell at changing values of
the parameter −1 ≤ x ≤ 1 for fixed reasonable values of their strengths [22]. In
Figure 1 we display the energy levels for the first two J = 0+ states, the lowest
two of the J = 2+ states and a J = 4+ state.

Figure 1. Excitation energies of the PQM (17) for the case of 4 protons (or neutrons)
in the ds shell, calculated in the full SU(3) basis at fixed values of G = 0.4 MeV and
χ = 0.1 MeV, when varying the parameter −1 ≤ x ≤ 1.
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Figure 2. (left) Excitation energies for the PQM interaction for the case of 2 protons
and 2 neutrons in the ds shell, calculated in full SU(3) basis; (right) Comparison of the
experimental and theoretical spectrum of 20Ne.

At the pairing limit (x = −1) a non-degenerate ν = 0, J = 0 state is
separated by the degenerated rest of ν = 2, J = 0+, 2+, 2+, 4+ states by the
pairing gap 2Δ = GΩ. Very soon after the pairing limit, for non-vanishing
values of χ first the lowest J = 2+ is separated from the rest of the degenerated
excited states, then around x = 0 all the states degeneracy is removed and the
triplet of ν = 2, J = 2+, 0+, 4+ is clearly observed, which reproduces the
spectra typical for the quadrupole phonon model [23] as well as in the Interacting
Boson Model [24]. In the pure SU(3) limit at x = 1 the rotational sequence
of ν = 2, J = 0+, 2+, 4+ states in the ground band is recovered, based on the
leading SU(3) irrep (8, 0) (see Table 2). As a result, a degeneracy of the two ν =
2, J = 2+ appears, which is lifted for nonvanishing values of G. The second
ν = 2, J = 0+, based on leading SU(3) irrep (4, 2) is the band head of the
excited 0+. It is obvious that the observed in real systems complicated spectra
are best reproduced by taking into account both the pairing and quadrupole-
quadrupole interactions.

Based on this on the left side of Figure 2 we present the results of a minimiza-

tion procedure for the RMS value σ =
√∑

i (Ei
Th − Ei

Exp)
2
/d (per degree of

freedom d) with respect to the two parametersG and χ of the residual interaction
(17). The black areas in the middle of the figure present the intervals of change
of the parameters for which we have the minimal values of σ or the values of
the parameters fitted to a set of experimental energies Ei

Exp from the observed
spectra of a real nuclear system. In the presented case we use the energies of the
low-lying states of 20Ne, which has 2 protons and 2 neutrons in the ds valence
shell. The red dotted line connects the values of each of the parametersG and χ
at their respective limiting cases of pure pairing or pure quadrupole-quadrupole
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interactions. This line could be assigned as the axis of change of the parameter
−1 ≤ x ≤ 1 used in Figure 1. The regions of the optimal values for the param-
eters lie on this line and their position in respect to its center could serve as a
measure of the influence of each of the terms of the residual interactions on the
energy spectra of the considered nucleus.

6 Conclusions

The algebraic structure of the shell-model algebra U(4Ω) is investigated to ob-
tain its reductions through the microscopic pairing algebra SO(8), containing
both isoscalar (T = 0, S = 1) and isovector (T = 1, S = 0) pairing opera-
tors and Elliott’s SU(3) algebra that contains the quadrupole Q2

M and angular
momentum operators L1

M . The two reduction chains appear as two distinct dy-
namical symmetries of the shell-model algebra, which allows the classification
of the basis states of the system along each of them. A relation between these
chains is established on the basis of the complementarity to the Wigner’s spin-
isospin UST (4) symmetry. This elucidates the algebraic structure of an extended
Pairing-plus-Quadrupole Model, realized in the framework of the Elliott SU(3)
scheme [7]. The pairing part of the Hamiltonian consists of pp-, nn- and pn-
pairing terms. The relationship between the basis states classified in each of the
dynamical symmetries is obtained, which allows for the evaluation of the matrix
elements of the operators representing each algebra in the reductions. This ap-
proach is used to study the combined effects of the quadrupole-quadrupole and
pairing interactions on the energy spectra of the nuclear systems.
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