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Abstract. The calculation of differential cross sections for elastic proton scat-
tering at energies 0.6 and 1.0 GeV and inelastic proton scattering (at the level
J = 5/2+) at energies 0.415, 0.8 and 1.0 GeV from 15N nucleus at E = 0.4,
0.8 and 1.0 GeV was made within the Glauber’s diffraction theory. It is shown
that in the approximation of double scattering using the shell wave function 15N
the amplitude of 15N- process can be calculated analytically. The calculation of
differential cross section in the optical limit, allows us taking into account the
collisions with nucleons on different shells.

1 Introduction

15N nucleus is stable, the number of its neutrons is just by one more than the
number of the protons. Though its abundance in nature is just 0.36%, it plays
an important role in CNO-cycle, being a basis of the nucleosynthesis of 12C,
16O and 4He. Therefore, in literature, the processes involving 15N are mainly
reviewed at low (astrophysical) energies [1].

The various characteristics of the 15N(p,γ)16O, 15N(p,α)12C reactions are
calculated, which form the branch point of the CNO-cycle [2, 3]. Thus, defini-
tion of the reaction correlation parameters is necessary in order to simulate the
process of energy production in stars, and nucleosynthesis of carbon, nitrogen
and oxygen isotopes in the process of hydrogen burning in stars.

Here we consider the elastic and inelastic scattering of protons from 15N
nucleus at higher energies (from 0.4 to 1.0 GeV). Therefore we use the Glauber
diffraction theory [4], which describes the proton scattering at the intermediate
energies in the most appropriate way. The Glauber theory is attractive because it
allows us to separate the structural (depending on the wave function (WF) of the
target nucleus) and dynamic (depending on the operator of multiple scattering)
components of the scattering amplitude.

The input parameters of the theory are the WF of the target and the elemen-
tary nucleon-nucleon amplitude. Parameters of the elementary nucleon-nucleon
amplitudes are taken from the experiments by pp and pn scattering [5–7].

Currently, when all precise calculations are made by the numerical method
with the help of large computer software, we have made the analytical calcula-
tion of the matrix element with the WF of 15N in the shell model and the opera-
tor, where the first and the second order of collisions are taken into account. With
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this approach, we were able to show the contribution to the differential cross sec-
tion (DCS) by different orders of collisions and to show the contribution to the
DCS from the interior region of the nucleus and the nuclear periphery.

One of the aim of the present paper to calculate the DCS of proton scattering
on 15N nucleus in the optical limit of the Glauber diffraction theory (when only
single collisions are taken into account in the operator of multiple scattering)
and to analyses this cross section sensitivity in proton scattering on the nucleons
of different shells. Therefore to describe the internal structure of 15N, we use the
shell model [8]. It is known that the multiple scattering series converges rapidly
and each next term of the series contributes to the cross section by several orders
less than the previous one. The optical limit approximation properly describes
the DCS at the front angles.

2 Brief Formalism

The scattering matrix element (amplitude) within the Glauber theory is written
as follows [4]:

Mif =
∑

MjM ′
j

ik

2π

∫
d	ρd	RA exp (i	q	ρ)δ(	RA)〈ΨJ′M ′

j

f |Ω|ΨJMj

i 〉, (1)

where ΨJMj

i and Ψ
J′M ′

j

f are the WFs of initial and final states, 	ρ is the impact pa-
rameter, perpendicular to the direction of the projection;A is the number of nu-
cleons in a target, 	RA = 1

A

∑A
n=1 	rn is the coordinate of the nucleus mass cen-

tre, 	q = 	k−	k′ is the transferred momentum,	k,	k′ are the momenta of the projec-

tile and the scattered particles in the center-of-mass system, 〈ΨJ′M ′
j

f |Ω|ΨJMj

i 〉
is the matrix element of the transfer from the initial to the final states.

The ground state of 15N nucleus is the level of negative parity with Jπ =
1/2−, T = 1/2 and |(1s)4(1p)11〉 configuration. The shell WF be represented
in the form [8]

Ψi,f (	ri) = Ψn0,l0,m0(	r1, . . . , 	r4)Ψn1,l1,m1(	r5, . . . , 	r15)
= Ψ000(	r1, . . . , 	r4)Ψ11m1(	r5, . . . , 	r15), (2)

where Ψn,l,m(	r1, 	r2, . . .) =
∏

ν Ψn,l,m(	rν) is the product of single-particle
functions, 	rν are the single-particle coordinates of nucleons.

The excited state of 15N nucleus is the level of positive parity with Jπ =
5/2+ and |(1s)4(1p)10(1d)1〉 configuration [8]

Ψf (	r1, 	r2, . . .) = |(1s)4(1p)10(1d)1〉

=
∑

m1m2

Ψ000(	r1, . . . , 	r4)Ψ11m1(	r5, . . . , 	r14)Ψ22m2(	r15). (3)
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Operator Ω in the Glauber theory is written in the form of a multiple-scattering
series

Ω = 1 −
A∏

ν=1

1 − ων(	ρ− 	ρν)

=
A∑

ν=1

ων −
∑
ν<τ

ωνωτ +
∑

ν<τ<η

ωνωτωη + · · · + (−1)A−1ω1ω2ωA, (4)

where the first term consider the single collisions, the second term is the double
collisions and so on, up to the last term which consider A-multiple collision.

Separate profile functionsων are expressed through the elementary pN-amplitudes
fpN (q):

ων(	ρ− 	ρν) =
1

2πik

∫
d	qν exp (−i	qν(	ρ− 	ρν))fpN (qν). (5)

The elementary amplitude itself is written in the standard manner

fpN (qν) =
kσpN

4π
(i+ εpN ) exp (−β2

pNq
2
ν/2), (6)

where σpN is the total proton scattering cross section by the nucleon, εpN is the
ratio of the real part of the amplitude to the imaginary one, and βpN is the slope
parameter at the amplitude corn are taken from [5–7].

To announce the key items of the derivation.
1. In the expression (4) we are restricted only the first two terms, owing to

that fact, that each next term gives a contribution to the cross section smaller by
several orders of magnitude than the previous one.

2. Substituting the series of multiple scattering (4) in the amplitude (1), and
then integrating it with the impact parameter d	ρ and momentum d	qν leads to the
following result:

Ω =
2π
ik
fpN (q)

15∑
i=1

ω̃i −
(

2π
ik
fpN

(q
2

))2 15∑
i<j=1

ω̃iω̃j , (7)

where
15∑

i=1

ω̃i =
15∑

i=1

exp (i	q	ρi),

15∑
i<j=1

ω̃iω̃j =
15∑

i<j=1

exp
(
i
	q

2
(	ρi + 	ρj)

)
δ(	ρi − 	ρj).

(8)

3. We represent the operators of single and double collisions as the sum of
operators affecting the nucleons at different shells:

15∑
i=1

ω̃i =
4∑

i=1

ω̃i +
14∑

i=5

ω̃i + ω̃15, (9)
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15∑
i<j=1

ω̃iω̃j =
14∑

i<j=1

ω̃iω̃j +
15∑

i=1

ω̃iω̃15. (10)

4. Replacing the flat vectors 	ρi (on which they depend ω̃) with three-dimentional
	ri, 	r15 → 	r, expending ω̃ = exp (i	q	r) in the Bessel series:

exp (i	q	r) = 4π
∞∑

λ=0

λ∑
μ=−λ

(i)λ

√
π

2qr
Jλ+1/2(qr)Yλμ (Ωr)Yλμ (Ωq) ,

and representing the WF in the centrally symmetric field is factorized into radial
Rnl(rν) and angular Ylm (Ωk) parts: Ψnlm(	ri) = Rnl(ri)Ylm (Ωr), then it is
possible to integrate the matrix element (1) in the spherical system of coordi-
nates.

Detailed description of the elastic p15N scattering may be found in [9], here
we show the result for the inelastic scattering. The matrix element of single
scattering:

M
(1)
if (	q) =

k

k′
2πfpN (q)

∑
λμ

(i)λ
〈
R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R11(r)
〉

× 〈Y2m2 (Ωr)|Yλμ(Ωr)|Y1m〉Yλμ(Ωq), (11)

where〈
R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R11(r)
〉

=
√
π

2q

∫ ∞

0

R∗
22(r)R11(r)Jλ+1/2(qr)r3/2dr, (12)

∑
λμ

〈Y2m2(Ωr)|Yλμ(Ωr)|Y1m〉Yλμ(Ωq)

=
∑
λμ

√
5(2λ+ 1)

3 · 4π 〈λ010|20〉〈λμ1m|2m2〉. (13)

The matrix element of double scattering:

M
(2)
if (	q/2) = M

(2)−sd
if (	q/2) +M

(2)−pd
if (	q/2), (14)

the upper indexes indicate the nucleons of the shell where collision occurs.

M
(2)−sd
if (	q/2) =

= C(q/2)
∑
λμ

(i)λ
〈
R00(r)R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R00(r)R11(r)
〉

× 〈Y00(Ωr)Y2m2(Ωr)|Yλμ(Ωr)|Y00(Ωr)Y1m(Ωr)〉Yλμ(Ωq), (15)
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where

C(q/2) =
ik′

(ik)2
6(2π)2

√
π

q/2
f2
(q

2

)
, (16)

〈
R00(r)R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R00(r)R11(r)
〉

=
∫ ∞

0

|R00(r)|2R∗
22(r)R11(r)Jλ+1/2(qr)r3/2dr, (17)

〈Y00(Ωr)Y2m2(Ωr)|Yλμ(Ωr)|Y00(Ωr)Y1m(Ωr)〉

=
1
4π

∫
Y ∗

2m2
(Ωr)Y ∗

λμ(Ωr)Y ∗
1m(Ωr)dΩr. (18)

The last integral is analog of (13).

M
(2)−pd
if (	q/2) =

= C̃(q/2)
∑
λμ

(i)λ
〈
R11(r)R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R11(r)R11(r)
〉

× 〈Y1m1 (Ωr)Y2m2(Ωr)|Yλμ(Ωr)|Y1m(Ωr)Y1m(Ωr)〉Yλμ(Ωq), (19)

C̃(q/2) =
15
2
C(q/2),

〈
R11(r)R22(r)

∣∣∣ 1√
r
Jλ+1/2(qr)

∣∣∣R11(r)R11(r)
〉

=
∫ ∞

0

|R11(r)|2R∗
22(r)R11(r)Jλ+1/2(qr)r3/2dr, (20)

〈Y1m1(Ωr)Y2m2(Ωr)|Yλμ(Ωr)|Y1m(Ωr)Y1m(Ωr)〉Yλμ(Ωq)

=
∑

LML′M ′
(−1)m2

√
15(2λ+ 1)
(4π)3/2

〈λ020|L′0〉〈L′010|L0〉〈L010|10〉

× 〈λμ2 −m2|L′M ′〉〈L′M ′1m|LM〉〈LM1m|1m1〉Yλμ(Ωq), (21)

It is important to note that in approximation of two multiple collisions all in-
tegrals are taken analytically and, therefore there is no loss of precision inherent
for numerical integration.

The DCS is determined by the squared modulus of the respective matrix
elements as

dσ

dΩ
=

1
2J + 1

∣∣∣M (1)
if (	q) −M

(2)
if (	q)

∣∣∣2 . (22)

174



Differential Cross Section of Elastic and Inelastic p15N Scattering

In the optical limit, the first term of the multiple scattering series (7) remains
only in operator Ω, being the sum of single collisions with all nucleons

Ω =
A∑

ν=1

ων , (23)

Let’s divide (23) into terms corresponding to the scattering over s- and -shells:

15∑
ν=1

ων =
4∑

ν=1

ων +
15∑

ν=5

ων , (24)

After substituting the operator (24) into (1), we obtain the matrix element as a
sum of two components

M
(1)
if (	q) =

k

k′
fpN (q)

[
M (1)

s (	q) +M (1)
p (	q)

]
. (25)

where

M (1)
s (	q) =

∫ ∣∣∣∣∣
4∏

ν=1

|Ψ000(	rν)

∣∣∣∣∣
2 4∑

ν=1

ων

4∏
ν=1

d	rν , (26)

M (1)
p (	q) =

∑
m

∫ ∣∣∣∣∣
15∏

ν=5

|Ψ11m(	rν)

∣∣∣∣∣
2 15∑

ν=5

ων

15∏
ν=5

d	rν , (27)

M
(1)
s (	q) is responsible for the scattering on the 1s-shell nucleons; M (1)

p (	q) is
responsible for the scattering on the 1-shell nucleons. Those matrix elements are
the overlap integrals of the WFs and the operators ων acting over the coordinates
of the nucleons in the corresponding shells.

The DCS is determined by the squared modulus of the respective matrix
elements as

dσOL

dΩ
=

1
2J + 1

∣∣∣M (1)
s (	q) +M (2)

p (	q)
∣∣∣2 . (28)

3 Results and Discussions

We have calculated the DCSs for elastic scattering at energies 0.6 and 1.0 GeV
and inelastic scattering at the level J = 5/2+ at energies 0.415, 0.8 and 1.0 GeV.

Figure 1 shows the contributions from different collision multiplicities to the
DCS for elastic scattering at energies 0.6 (a) and 1.0 GeV (b).

As it can be seen from the figures, the single scattering (dash curve) gives
the main contribution to the forward angles, but it decreases quickly and then
the double scattering (dotted curve) begins to dominate at the larger angles. The
minima at θ ∼ 14◦ in Figure 1a and at θ ∼ 9◦ in Figure 1b, caused by the de-
structive interference, appear at points where the partial cross sections is crossed
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Figure 1. Contributions from the different collision multiplicities to the DCS at E = 0.6
(a) and 1.0 (b) GeV. Curves dash, dotted and solid are the contributions single, double
collisions and their sum.

each other, because the series of multiple scattering are sign-changing. In all
this cases the resulting cross section at small angles is lower than the partial
cross section of single scattering. The reason of such behavior is the fact that the
resulting cross section is equal to the difference single and double amplitudes
(see Eq. (22)).

Additional minima in the partial cross sections at θ ∼ 33◦ in Figure 1a and
at θ ∼ 23◦ in Figure 1b arise because of the use of the realistic WFs that contain
the angular part. As a result, the amplitude can change sigh. Since the DCS is
the square of the amplitude, it leads to a minimum in the DCS.

Figure 2 shows the contribution to the DSC from the scattering on the nucle-
ons of 1s (dash curve) and 1p (dotted curve) shells in the optical limit (when we
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Figure 2. Contribution to the single cross-section (solid curve) from the scattering on the
nucleons of 1s (dash curve) and 1p (dotted curve) shells at E = 0.6 GeV (a) and 1.0 GeV
(b). Here, the solid curve is the same as dash curve in Figure 1.

take into account only single scattering in series of multiple scattering, it is solid
curve). We can see that at small angles the main contribution to the DCS gives
1p-shell nucleons scattering. With increasing scattering angles the contribution
from the 1s-shell nucleons scattering decreases slowly than the DCS from the
1p-shell nucleon scattering. At some angles they become equal. At these points
(where the DCS are equal) arise the interference of amplitudes (constructive or
destructive depend on sigh of amplitudes). For example there are the construc-
tive interference at θ ∼ 13◦ and 32◦ in Figure 2a, and the constructive interfer-
ence at θ ∼ 9◦ and destructive one at θ ∼ 15◦ and 28◦ in Figure 2b. Whereas,
in Figure 2a the deep minima observed in the DCS on 1p-shell nucleons do not
affect the behavior of the resulting cross section.
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Figure 3. Contributions from different collision multiplicities to the DCS of inelastic
scattering at E = 0.415 (a), 0.8 (b) and 1.0 GeV (c). Dash, dotted and solid curves
correspond to single, double and their sum scattering.

Why the scattering on 1-shell nucleons is dominated at forward angles and
the scattering on 1s-shell nucleons is dominated at larger angles? This occurs
due to the fact that the momentum transfer increases with an increase of the
scattering angles and proton can penetrate deeper into the nucleus and it interacts
with the nucleons of internal 1s-shell.
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Let’s discuss inelastic scattering. Figure 3 shows the contribution to inelastic
scattering DCS from single and double collisions at E = 0.415 (a), 0.8 (b), and
1.0 (c) GeV. The DCS at zero angle tends to zero because of the orthogonality
of the initial and the final states WFs.

Figure 3a shows that single scattering dominates in the whole angular re-
gion. This can be explained the fact, that the scattering of proton (occurs at the
nuclear periphery) on the outside nucleon, located on 1d-shell. Double colli-
sions in the first maximum are by three orders of magnitude smaller than the
single collisions, and in the resulting cross section they lead to slight filling of
the minimum at θ ∼ 22◦ and slight decrease the cross section at θ > 35◦. An-
other pictures are shown in Figures 3b,c. In the region of forward angles (θ up
to 25◦) the single collisions give the main contribution to the resulting DCS, but
they rapidly decrease at θ > 25◦, and the double collisions at θ > 30◦ become
comparable with the single ones. At the large angles they begin to dominate
and determining the behavior of the cross section. This happens because with
increase of the energy the higher order collisions comes more significant contri-
bution to the DCS. This is the result of the fact, that the more energetic colliding
particles can penetrate deeper into the interior of the nucleus and collide with a
more number of nucleons. The transfer momentum in the reaction also increases
with increase of the scattering angle, so that the contributions of the collisions
of higher multiplicity become rather more significant at the large angles.

As in the elastic p15N scattering, the additional minima in the double partial
cross sections (at θ ∼ 16◦ and 30◦ in Figure 3a, at θ ∼ 11◦ and 20◦ in Figure 3b,
at θ ∼ 17◦ and 22◦ in Figure 3c) arise due to the use realistic WFs that include
an angular part. As a result, the amplitude can change sigh and it leads to the
minimum in the DCS.

4 Conclusions

The differential cross sections of the elastic and inelastic (the level J = 5/2+)
p15N scattering were calculated within the framework of the Glauber diffrac-
tion theory at intermediate energies from 0.415 to 1.0 GeV. It is show that the
application of the Glauber diffraction theory to the p15N scattering with WF pre-
sented in the form of Gaussian functions and with the operator expressed by an
exponential function allows us to calculate analytically the scattering amplitude
and take into account the structural components of the WFs.

It is revealed the single scatterings are dominated in the region of forward
angles, while the contribution from the double scatterings only slightly decrease
the DCS. At larger angles the double scatterings become dominant and deter-
mine the behavior of the cross section. Such behavior of DCS is interpreted as
follows. With the increase of proton energy, they can penetrate deeper into the
interior of the nucleus and can be rescattered on a more number of nucleons.

Considering the dependence of the DCS on scattering over nucleons in dif-
ferent shells (in the optical limit) we can see that the small number of nucleons
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on the 1s-shell lead to their substantially decrease of the contribution to the re-
sulting cross section in the forward angles in comparison to the scattering on the
1p-shell nucleons. However, at large angles the partial DCS of scattering on the
nucleons of 1s-shell begins to dominate and the resulting DCS is determined by
the competing contribution of both partial cross sections.
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