Nuclear Dynamics with the Sky3d Code

P. D. Stevenson

Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

A new computer code which implements the time-dependent Hartree-Fock method for nuclear systems has recently been published [1]. Using it, one can explore a diverse range of collective nuclear motion whose sole physics input is a choice of Skyrme force parameterisation.

Initial conditions consist of one or more nuclei, typically generated as the result of static Hartree-Fock calculations, positioned at will in a coordinate space box, with rather arbitrary velocity initialisations which can either boost multiple nuclei relative to each other, and/or instigate an excitation of one or more nuclei. The code has been used for the calculation of fusion, deep-inelastic collisions, transfer reactions, fission, collective resonance states, neutron star matter, and to explore the properties of the effective interaction.

We present a sumamry of the code along with results obtained from it, along with a practical guide to its use, along with a guide to the kind of extensions one might consider applying to it.

Acknowledgements

P. D. Stevenson thanks the UK STFC for providing financial support for this work.

References

 J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson and A. S. Umar, Computer Physics Communications (2014), http://dx.doi.org/10.1016/j.cpc.2014.04.008

12