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Abstract. In this paper derivation of the electromagnetic multipole transition
operators within the Generator Coordinate Method with the generalized Gaus-
sian Overlap Approximation has been shown. The formulae for the collective
transition operators are obtained up to the second order differential operators.
A motivation for these calculations is searching of higher point symmetries in
nuclei.

1 Introduction

Motivation: searching for higher point symmetries in nuclei.
Nuclear collective models can be constructed in various ways. One of the

most popular and effective method is a prescription based on the idea of hy-
drodynamical model proposed by Bohr and his collaborators many years ago
[1, 2, 4]. However, this method allows for construction of an arbitrary set of
nuclear collective spaces corresponding to a given classical model. In addi-
tion, there are problems to construct the appropriate forms of observables in
such spaces – these constructions are often dependent on arbitrarily chosen rules
which should be fulfilled by collective observables related to fermionic degrees
of freedom. An interesting set of collective observables is the set of operators
describing electromagnetic multipole transitions. The electric multipole oper-
ators seem to be simpler for construction because they are dependent only on
charge density distribution. The magnetic multipole operators are more difficult
for derivation because they depend on the electric current density which to some
extend is a function of linear and angular momenta operators.

In the literature concerning nuclear collective models there are very few pa-
pers related to this problem. The electromagnetic transition operators are often
obtained on a phenomenological basis. They are rather a kind of a guess usu-
ally based on arbitrarily assumed transformation properties of these operators
with a number of free parameters which allow to fit the theoretical transition
probabilities to the experimental data.
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In this paper we show a preliminary work on the multipole electromagnetic
transition operators for collective models making use of the Generator Coordi-
nate Method with the generalized Gaussian Overlap Approximation (GCM+GOA).

The usual starting point for calculation of electromagnetic transitions within
the microscopic models with nucleonic degrees of freedom is the so called
”long–wave” approximation of the transition operators obtained within the field
theory for point–like nucleons [3].

In this approximation the electric transition multipole operators of multipo-
larity l are dependent only on charge density of protons inside of a nucleus

M(E; lm) =

A∑

n=1

e

(
1

2
− tz(n)

)
rlnYlm(φn, θn), (1)

where tz(n) and (rn, φn, θn) denote the third component of the isospin quantum
number and the spherical coordinates of the n-th nucleon, respectively, e is the
electric elementary charge.

The magnetic transition operators are dependent on the nuclear electric cur-
rent density and the magnetic properties of neutrons moving inside of this nu-
cleus

M(M; lm) = µN
√
l(2l + 1)

×
A∑

n=1

rl−1
n

(
gs(n)~sn +

2gl(n)

l + 1
~ln

)
· ∇n

[
rlnYlm(φn, θn)

]
, (2)

where µN is the nuclear magneton, gs(n) and gl(n) denote the giromagnetic
factors for the n-th nucleon.

On the other hand, there is no clear starting point for derivation of the col-
lective transition operators Q(ξ; lm) from the above microscopic formulae. In
this case, there are usually used some analogies, simple models and assumed
transformation properties which should be fulfilled for these transition opera-
tors [5,6]. For example, the formulae for the collective electric transition opera-
tors derived on a base of an interpretation of the average value of the operators
(1,2) are calculated for an arbitrarily chosen wave function dependent on both
nucleonic and collective variables. These formulae are very often used in appli-
cations [7].

One of the most general derivation of the quadrupole transition operators
based on the algebraic properties of the quadrupole collective space is shown
in the review paper [8]. The appropriate operators can be obtained in terms of
some covariants. For example, the electric transition operators can be written as

M̂(E; lm) =

√
2l + 1

16π
ZeRl0

l
2 +1∑

k=1

q
(l)
k (σ0, χ0)τk lm(α2, σ2), (3)
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where the elementary tensors are expressed in terms of the quadrupole collective
variables [8]

σ0 = β2, χ0 = β3 cos 3γ, (4)

σ2m = −
√

7

2
[α2 × α2]2m, σ3m =

√
2[α2 × σ2]3m. (5)

In these expressions α2µ denotes the quadrupole variables introduced in [1] and
(β, γ) are the corresponding polar coordinates in the intrinsic frame.

The special case of the quadrupole transition operator is then dependent on
the collective variables (β, γ) in the following way

M̂(E; 2m) =

√
5

16π
ZeR2

0

[
D2
m0(Ω)

? (
q1β cos γ + q2β

2 cos 2γ
)

+
(
D2
m2(Ω)

?
+D2

m,−2(Ω)
?
) 1√

2

(
q1β sin γ − q2β

2 sin 2γ
)]
, (6)

where the Euler angles Ω = (Ω1,Ω2,Ω3) determine the space orientation of a
nucleus and Dl

m,m′(Ω) are the Wigner functions for the rotation group.
The formulae for the magnetic transition operators are not ”static” and they

are dependent on the angular momentum operator L̂1µ:

M̂(M ; lm) =

√
2l + 1

4π

Z

A
µNR

l−1
0

l+1∑

κ=l−1

[
Λκ ×

1

~
L̂1

]

lm

, (7)

where the appropriate factors are given by

Λκµ(α2) =

kκ∑

k=1

g
(κ)
k (σ0, χ0)τk κµ(α2, σ2, χ3). (8)

In this case, the simplest and the most important is the dipole magnetic transition
operator, which can be written as

M̂(M1;u) =

√
3

4π

Z

A

µN
~
gu(β, γ)L̂u, where u = x, y, z, (9)

and where L̂u denotes the Cartesian components of the angular momentum op-
erator and the giromagnetic factors are given by

gu(β, γ) = g
(0)
0 −

√
2

5
g

(2)
1 β cos γu − g(2)

2 β2 cos 2γu. (10)

As one can see, the above formulae based on the Gordan–Hilbert Finiteness
Theorem [9] are dependent on a set of arbitrary constants, even the scaling fac-
tor in front of the operator is a free parameter. Usually this scaling factor is
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chosen to have a correspondence with classical expression for the electromag-
netic moments for arbitrarily chosen simplified model of the charge and current
densities in the nucleus. In addition, there are technical difficulties to construct
the appropriate tensors for higher multipolarities than 2.

In the following we show derivation of the multipole transition operators
for the collective model based on the Generator Coordinate Method with the
extended Gaussian Overlap Approximation [16]. One promising example of
this derivation was done in the paper [10] for axially symmetric components of
the electric transition operators with even multipolarity 0, 2 and 4.

The motivation for derivation of all components of the collective transition
operators on a microscopic basis is searching for higher point symmetries in nu-
clei within the TETRANUC collaboration, as for example the tetrahedral sym-
metry predicted more than ten years ago [11].

2 GCM+GOA

The Generator Coordinate Method belongs to a set of projection methods. Usu-
ally it is presented as the method based on the trial function of the following
integral form

|Ψ〉 =

∫
dq f(q) |q〉 , (11)

where q = (q1, q2, . . . , qs) is a set of collective variables and |q〉 is the generat-
ing function dependent on nucleonic degrees of freedom parametrized by these
collective variables, for short review see e.g. [12]. The Griffin-Hill-Wheeler
equation [13,14] obtained within this framework allows for calculation of eigen-
states and eigenvectors in the restricted space spanned by the family of trial
functions (11). More formally the GCM-space should be defined as the mini-
mal, closed space of nuclear states spanned by the generating function |q〉, i.e.
the family of functions |q〉, where q = (q1, q2, . . . , qs) runs over the whole
range available for these collective variables. However, in practice using of trial
functions (11) is in most cases sufficient.

One deficiency of GCM is that the GCM method does not allow to trans-
form the operators acting in the state space of nucleons into the operators acting
in the corresponding collective space. To be honest, there exist the formal trans-
formation invented by Brink and Weiguny [15] which transform the subspace of
nuclear states spanned by the generating function to the corresponding collective
subspace, however, it is too complicated for practical use.

Instead, more useful is using of the Gaussian Overlap Approximation (GOA)
which allows to obtained the approximate transformation from the nucleon space
to collective space in terms of differential operators. In this paper the extended
GOA is used [16]. This form of GOA extends the range of applicability of this
approximation.

The main assumption of this approach is that there exists a set of coordinates
{yk} to which the collective variables {qk} can be transformed and in which
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the overlap function of the generating functions is of the Gaussian shape. More
precisely, one can approximate the overlap of the generating functions 〈q|q′〉 as
follows:

〈q|q′〉 ≈ 〈q|q′〉G = exp

{
−1

2

s∑

k=1

(Γk(q, q′))2

}
, (12)

where the required coordinates {yk} can be defined as

yk = Γk(q, q0), (13)
Γk(q, q̃) + Γk(q̃, q′) = Γk(q, q′), (14)
Γk(q, q′) + Γk(q′, q) = 0. (15)

q0 is here an arbitrary fixed point in the collective space. To show how general
is this form we write an example of realization of the Γk(q, q0) functions

Γk(q, q0) =

∫

C(q0,q)

s∑

ν=1

ukν(q)dqν , (16)

where ukν(q) are arbitrary functions and C(q0, q) is the curve joining two
points q0 and q.

Sometimes there is useful even more general Gaussian approximation

〈q|q′〉 ≈ 〈q|q′〉G = exp (iγ(q, q′)) exp

{
−1

2

s∑

k=1

(
Γk(q, q′)

)2
}
. (17)

However, in the following the phase γ is assumed to be 0.
The Gaussian Overlap Approximation was invented for the Hermitian oper-

ators.
Let us assume the operator Â acting on the nucleonic degrees of freedom is

Hermitian. Using of the trial functions (11) a general expression for the matrix
elements of this operator can be written as:

〈Ψ2| Â |Ψ1〉 =

∫
dq dq′f2(q)?h(q, q′) 〈q|q′〉 f1(q′)

≈
∫

dq dq′f2(q)?h(q, q′) 〈q|q′〉G f1(q′), (18)

where the reduced overlap function of the operator Â is

h(q, q′) =
〈q| Â |q′〉
〈q|q′〉 . (19)

In the above expression the only approximation is replacement of the true over-
lap function by the generalized Gaussian form (12). This replacement allows
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for an expansion (to the second order, or higher) in terms of polynomials of
differential operators [16]:

〈Ψ2| Â |Ψ1〉 ≈
∫

dq
√
|g|φ2(q)?(V̂A + F̂A + T̂A + . . . )φ1(q′), (20)

where the metric tensor and its determinant can be written as:

gµν = −
(

∂

∂sµ
∂

∂sν

〈
q +

s

2
|q′ − s

2

〉)

s=0

, (21)

|g| = det(gµν). (22)

The operators V̂A, F̂A and T̂A are differential operators of 0, 1 and 2 order, re-
spectively. The dots denote the higher order terms. In case when Â is a Hamil-
tonian the first three terms correspond to the potential energy, the asymmetry
operator and the kinetic energy, respectively.

The corresponding collective functions φ are in a complicated manner deter-
mined by the weight functions f contained in the trial functions (11)

φ(q) =

∫
dξ F (f(ξ), 〈q|ξ〉G). (23)

It means that the representation of the operator Â in the collective space up to
the second order can be written as:

Â→ Â ≈ V̂A + F̂A + T̂A, (24)

where the 0–order approximation in the number of differential operators is

V̂A(q) = 〈q| Â |q〉 − ε0(q), (25)

ε0(q) =
1

2
gµνRe

[
∆

∆qµ

(
∆h(a, a′)

∆aν

)

q

−
(

∆

∆aµ
∆h(a, a′)

∆aν

)

q

]
, (26)

where the ∆
∆xµ denotes the appropriate covariant derivative in respect to the

variable xµ, e.g. the covariant derivative of the covariant tensor Cν(x) is defined
as

∆Cν(x)

∆xµ
=
∂Cν(x)

∂xµ
− ΓκνµCκ(x), (27)

where Γκνµ are Christoffel symbols of the second kind. The index q means that
the action of the operator is calculated at the point a = a′ = q of the collective
manifold: (

ζ̂(a, a′)
)
q
≡
(
ζ̂(a, a′)

)
a=a′=q

. (28)
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The 1st–order approximation in derivatives is given by

F̂A =− i

2
gµνIm

[
∆

∆qµ

(
∆h(a, a′)

∆aν

)

q

]

+ (−i)gµνIm

[(
∆h(a, a′)

∆aν

)

q

]
∂

∂qν
(29)

and the 2nd–order differential operator is of the form of the Laplace–Beltrami
operator:

T̂A = − 1

2
√
|g|

∂

∂qµ

√
|g|(M−1(q))µν

∂

∂qν
, (30)

where the the second order tensor (for Â = Ĥ , where Ĥ is a Hamiltonian,
this tensor is interpreted as the inverse of the mass tensor) contains a physical
meaning of this term

(M−1(q))µν =
1

2
gµρRe

[( ∆

∆aρ
∆h(a, a′)

∆a′σ

)
q
−
( ∆

∆aρ
∆h(a, a′)

∆aσ

)
q

]
gσν .

(31)
In this way we have obtained an approximate image of the fermionic operators
in a collective space.

3 Collective Transition Operators

The transformation from the nucleonic space of states to the corresponding (ap-
proximate) collective space, obtained above, was done for Hermitian operators.
The electromagnetic transition operators M̂(ξ = E, lm) and M̂(ξ = M, lm) are
not Hermitian. In this case the simplest solution which allows to use the GOA
approximation is to express the transition operators in terms of Hermitian forms:

M̂+(ξ, lm) =
1

2
(M̂(ξ, lm) + M̂(ξ, lm)†)

=
1

2
(M̂(ξ, lm) + (−1)mM̂(ξ, l,−m)), (32)

M̂−(ξ, lm) =
−i
2

(M̂(ξ, lm)− M̂(ξ, lm)†)

=
1

2
(M̂(ξ, lm) + (−1)m+1M̂(ξ, l,−m)), (33)

where ξ = E,M labels the electric and magnetic transitions, respectively.
The full electromagnetic transition operators can be expressed by these Her-

mitian operators as:

M̂(ξ, lm) = M̂+(ξ, lm) + iM̂−(ξ, lm). (34)

An important remark is that M̂± are not the real and the imaginary part of the
corresponding transition operator – the matrix elements of the operators M̂± are
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in general complex numbers. It is important for evaluation of appropriate matrix
elements in the formulae (25), (29) and (30).

To apply the GOA approximation to the transition operators one needs to de-
rive the collective representations of the operators M̂±(ξ, lm). For this purpose
one needs to use the reduced overlaps for the operators M̂±(ξ, lm)

h(lm; q, q′) =
〈q| M̂(ξ, lm) |q′〉

〈q|q′〉

=
〈q| M̂+(ξ, lm) |q′〉

〈q|q′〉 + i
〈q| M̂−(ξ, lm) |q′〉

〈q|q′〉 , (35)

i.e we denote the appropriate reduced overlaps as:

h(lm; q, q′) = h+(lm; q, q′) + ih−(lm; q, q′). (36)

Making use of the reduced overlaps h±(lm; q, q′) allow to obtain the collective
representation Q̂(ξ; lm) of M̂(ξ; lm), up to the second order, within GCM+GOA
approach as follows

M̂(ξ; lm) → Q̂(ξ; lm)

≈ (V̂+ + iV̂−) + (F̂+ + iF̂−) + (T̂+ + iT̂−). (37)

In most cases one can choose the generating function which fulfil the following
condition for the overlap

Im 〈q| ∂
∂q
|q〉 = 0. (38)

Usually this can be achieved by the appropriate choice of phases in the single
particle functions. In general, this condition is not crucial for the GOA approxi-
mation but it simplifies calculations significantly.

In this case the metric tensor can be expressed as:

gµν = 〈q|
←−
∂

∂qµ

−→
∂

∂qν
|q〉 . (39)

The zero order GOA approximation (25) contains two terms. The first one is the
simplest matrix element which do not include any derivative

h±(lm; q, q′) = 〈q| M̂±(ξ, lm) |q〉 . (40)

The required first order derivatives of the reduced overlaps needed for the 0 and
1st order approximation can be written as the following matrix elements

(
∂h±(lm; a, a′)

∂aν

)

a=a′=q

= 〈q|
←−
∂

∂qµ
M̂±(ξ, lm) |q〉 (41)
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and the covariant derivative of (41) can be expressed in the following form

∆

∆qµ

(
∂h±(lm; a, a′)

∂aν

)

a=a′=q

= 〈q|
←−
∂ 2

∂qν∂qµ
M̂±(ξ, lm) |q〉

+ 〈q|
←−
∂

∂qν
M̂±(ξ, lm)

−→
∂

∂qµ
|q〉 − Γkµν(q) 〈q|

←−
∂

∂qµ
M̂±(ξ, lm) |q〉 . (42)

Note: the above expression can be equal to zero even if the partial derivatives
are different from zero (this happens for example for typical Bohr like Hamilto-
nians).

The other required matrix elements are:

(
∆

∆aµ
∆h±(lm; a, a′)

∆aν

)

a=a′=q

= 〈q|
←−
∂ 2

∂qν∂qµ
M̂±(ξ, lm) |q〉

− 〈q|
←−
∂ 2

∂qν∂qµ
|q〉 〈q| M̂±(ξ, lm) |q〉 − Γkµν(q) 〈q|

←−
∂

∂qµ
M̂±(ξ, lm) |q〉 (43)

and
(

∆

∆aµ
∆h±(lm; a, a′)

∆a′ν

)

a=a′=q

=

+ 〈q|
←−
∂

∂qµ
M̂±(ξ, lm)

−→
∂

∂qν
|q〉 − 〈q|

←−
∂ 2

∂qµ∂qν
|q〉 〈q| M̂±(ξ, lm) |q〉 . (44)

In this way we have obtained the formulae for collective transition operators
derived directly from the single particle transition operators. It is clear that these
operators can be used for the collective models obtained by the GCM+GOA
method. The GCM+GOA leads to a special form of the collective space. It is not
clear if one can use the same form of the electromagnetic transition operators for
collective models derived on different basis than this Gaussian approximation.
They can lead to different form of the corresponding collective space. This is an
open question which requires further investigation.
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