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Abstract. We show that the potential in the radial equation in the model of
coherent quadrupole-octupole motion (CQOM) in nuclei generates a sequence
of superpotentials and subsequent series of effective potentials which satisfy the
shape-invariance condition and correspond to a SUSY-QM hierarchy of Hamil-
tonians. On this basis we suggest that the original CQOM level scheme pos-
sesses a generic supersymmetric structure of the spectrum inherent for the co-
herent quadrupole-octupole mode. We outline the mechanism in which the real
quadrupole-octupole spectra in even-even and odd-even nuclei deviate from the
genuine symmetry. By using it we illustrate the possibilities to identify the
signs of supersymmetry in the alternating-parity spectra of even-even nuclei and
the quasi-parity-doublet levels of odd-mass nuclei described within the CQOM
model approach.

1 Introduction

The supersymmetry (SUSY) concept in physics was introduced as a part of the
efforts for a unified description of the basic interactions in nature [1]. Within
SUSY one may consider the fundamental particles – fermions and bosons –
as superpartners related by a transformation which keeps the same mass and
changes the spin by 1/2. Since the masses of the presently observed particles do
not allow one to identify any pair of superpartners, it appears that the genuine
SUSY does not exist at the currently accessible energies, whereas a spontaneous
symmetry breaking mechanism providing different masses for the superpartners
may take a place [2]. Nevertheless, the specific algebraic structure of SUSY,
which includes a combination of commutation (bosonic) and anti-commutation
(fermionic) relations, can be associated in a more general context with the so-
lution of some quantum mechanical problems and has lead to the development
of the so-called supersymmetric quantum mechanics (SUSY-QM) [3, 4]. In par-
ticular, it was realized [5] that the SUSY-QM leads to a deeper understanding
of the factorization approaches [6, 7] applied in the solution of the Schrödinger
equation and allows one to outline and properly systematize the various classes
of known analytically solvable potentials. A common feature of all these poten-
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tials, hereafter called SUSY potentials, is that each of them generates a hierar-
chy of factorized Hamiltonians the eigenvalues of which exhaust the spectrum
of the given potential. Also, it is known that some SUSY potentials satisfy the
so-called shape invariance condition [8]. In this case all potentials in the hi-
erarchy have the same functional dependence on the (space) variable and only
differ through a set of discrete parameters which change under given rule at the
subsequent hierarchy steps. The different potentials are related through certain
recurrence relation allowing one to obtain simplified expressions for the ener-
gies and wave functions in the spectrum. A classification of some basic shape
invariant potentials (SIPs) is given in [9].

The SUSY-QM formalism was extended to Hamiltonians with coordinate-
dependent effective mass [10, 11]. The shape-invariance condition was general-
ized (deformed) for the respectively obtained effective potentials allowing one
to apply the SUSY-QM techniques for solving the eigenvalue problem. Recently
this concept was applied to nuclear collective models [12–14]. The SUSY-QM
technique for SIPs was applied to solve the eigenvalue problem for Bohr-like
Hamiltonians with deformation-dependent mass terms in the cases of David-
son [12, 13] and Kratzer [14] potentials. The approach allows one to obtain
analytical expressions for spectra and wave functions for separable potentials in
the cases of axially-symmetric prolate deformed nuclei, γ-unstable nuclei and
triaxial nuclei. The dependence of the mass on the deformation moderates the
increase of the moment of inertia with deformation, removing a known drawback
of the Bohr model. As a result a good description of ground-, β-, γ- energy band
levels and the attendant B(E2) transition probabilities in a wide range of nuclei
in different regions of collectivity was obtained with a reasonable accuracy.

Another collective model assuming a coherent quadrupole-octupole motion
(CQOM) in nuclei was developed by using a two-dimensional potential depend-
ing on the axial quadrupole and octupole deformation variables [15]– [18]. The
assumption of coherence allows one to exactly separate the variables in ellip-
soidal coordinates obtaining a “radial” equation for the effective quadrupole-
octupole deformation and “angular” equation for the relative quadrupole-octupole
excitation modes. The radial equation involves a Davidson-like potential which
allows one to find an analytical solution of the model. The obtained spectrum
corresponds to coherent quadrupole-octupole vibrations coupled to rotation mo-
tions of the nucleus. It was shown that the model is capable to describe and
classify the yrast and higher excited alternating-parity sequences in even-even
nuclei and split parity-doublet spectra in odd-mass nuclei. The analytical solv-
ability and classification ability of the model make it interesting to examine the
possibly underlying symmetry which determines the properties of the model sys-
tem as well as to check to what extent such a symmetry can be identified in the
observed experimental spectra.

The aim of the present work is to clarify the above issue by applying the
SUSY-QM techniques to the CQOM model Hamiltonian. It will be shown that
the potential in the radial equation is shape invariant and this allows one to ex-
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press the Hamiltonian in terms of the SUSY hierarchy and to subsequently ob-
tain the model spectrum through the SUSY-QM procedure. We shall examine
the possibility to associate SUSY with the coherent quadrupole-octupole modes
assumed in the model. At the same time we shall study the deviation of the
experimentally observed quadrupole-octupole spectra from the model imposed
scheme. This should allow us to look for a proper symmetry-breaking mecha-
nism which may govern the observed collective properties of nuclei.

In Sec. 2 an overview of the SUSY-QM concept and the SIPs formalism
is given. In Sec. 3 the application of the SUSY-QM techniques to the CQOM
model is presented. In Sec. 4 the possibility to associate CQOM with SUSY is
considered together with the analysis of observed spectra and related discussion.
In Sec. 5 concluding remarks are given.

2 SUSY-QM Formalism for Analytically Solvable Potentials

2.1 Supersymmetric factorization of a solvable one-dimensional Hamil-
tonian

Let us consider the ground-state (gs) wave function ψ0(x) and energy E0 for a
one-dimensional potential V (x) which satisfy the Schrödinger equation

Hψ0(x) = − ~2

2m

d2ψ0(x)

dx2
+ V (x)ψ0(x) = E0ψ0(x). (1)

If ψ0(x) is nodeless and the potential V (x) → V−(x) = V (x) − E0 is shifted
so as E0 → E−0 = 0, with ψ−0 (x) ≡ ψ0(x), one obtains from (1)

V−(x) =
~2

2m

ψ
′′−
0 (x)

ψ−0 (x)
, (2)

and H → H− such that

H−ψ
−
0 (x) = − ~2

2m

d2ψ−0 (x)

dx2
+ V−(x)ψ−0 (x) = 0. (3)

If the function ψ−0 (x) is known or guessed the potential V−(x) can be deter-
mined from (2) up to a constant. Hamiltonian (3) can be factorized in the
form [5]

H− = A†A. (4)

The operators A and A† are defined as first order differential operators

A =
~√
2m

d

dx
+W (x), A† = − ~√

2m

d

dx
+W (x), (5)
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where the unknown functionW (x) is determined so that Eq. (3) is satisfied after
introducing (4) and (5)

H−ψ
−
0 (x) =

[
− h2

2m

d2

dx2
− h√

2m
W ′(x) +W 2(x)

]
ψ−0 (x) = 0. (6)

By comparing Eqs. (6) and (3) one finds:

V−(x) = W 2(x)− ~√
2m

W ′(x). (7)

This equation is a first order differential equation for the function W (x) known
as Riccati equation [19]. By taking V−(x) from (2) its solution is obtained as

W (x) = − ~√
2m

ψ
′−
0 (x)

ψ−0 (x)
= − ~√

2m

d

dx
ln[ψ−0 (x)]. (8)

Then the action of A on the gs wave function gives

Aψ−0 (x) =
~√
2m

d

dx
ψ−0 (x) +W (x)ψ−0 (x) = 0, (9)

which allows one to determine ψ−0 (x) by W (x)

ψ−0 (x) = N exp

(
−
√

2m

~

∫ x

W (k)dk

)
, (10)

where N is a normalization constant.
By changing the order of the operators in the factorization (4) one defines a

new Hamiltonian

H+ = AA†, (11)

whose action on the gs wave function

H+ψ
−
0 (x) =

[
− h2

2m

d2

dx2
+

h√
2m

W ′(x) +W 2(x)

]
ψ−0 (x) (12)

defines a new potential

V+(x) = W 2(x) +
~√
2m

W ′(x) (13)

related to V−(x), W (x) and W ′(x) through

1

2
[V−(x) + V+(x)] = W 2(x),

1

2
[V−(x)− V+(x)] = W ′(x) . (14)
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Also, one has

[A,A†] =
−2~√

2m
W ′(x). (15)

The function W (x) is known as superpotential, while the potentials V−(x) and
V+(x) are called supersymmetric partners.

By considering the eigenfunctions ψ−n (x), ψ+
n (x) and eigenvalues E−n , E+

n

(n = 0, 1, 2 . . . ) of the Hamiltonians H− and H+, respectively, one can easily
check thatH+(Aψ−n (x)) = E−n (Aψ−n (x)) andH−(A†ψ+

n (x)) = E+
n (A†ψ+

n (x))
which together with (9) leads to the relations

E+
n = E−n+1 , with E−0 = 0 (16)

ψ+
n (x) =

(
E−n+1

)− 1
2 Aψ−n+1(x), ψ−n+1(x) =

(
E+
n

)− 1
2 A†ψ+

n (x). (17)

It is seen that the spectra of H− and H+ are identical except for E−0 which
does not appear for H+. By using (17) one can obtain the eigenfunctions of
H− from those of H+ and vice versa, except for ψ−0 which is determined by the
superpotential in (10). H− and H+ are referred to as SUSY partners. Together
with the operators A and A† they form a set of matrices

H =

(
H− 0
0 H+

)
, Q =

(
0 0
A 0

)
, Q+ =

(
0 A†

0 0

)
,

which satisfy the following commutation and anti-commutation relations

[H,Q] = [H,Q+] = 0, {Q,Q+} = H, {Q+, Q+} = {Q,Q} = 0 (18)

closing the superalgebra of sl(1, 1). The operators Q and Q+ are known in the
SUSY theory as supercharges and can be interpreted as operators transforming
the bosonic degrees of freedom into fermionic ones. The fact that they commute
with H is related to the supersymmetric degeneracy of the spectrum. The SUSY
algebra is an extension of the Poincare algebra [3, 5].

2.2 SUSY-QM hierarchy of Hamiltonians and shape invariant potentials

Starting byH(1) ≡ H− andH(2) ≡ H+, Eqs. (4) and (11), a hierarchy of super-
symmetric partner Hamiltonians H(1), H(2), H(3), . . . can be constructed, so
that H(3) is obtained as the upper superpartner of H(2) after factorizing the lat-
ter by analogy to H(1), H(4) is constructed by H(3) in the same way, and so on.
In this procedure the levels of each subsequent Hamiltonian are obtained from
the previous one by removing its lowest level. Thus, knowing the eigenvalues
and eigenfunctions of H(1) one obtains the eigenvalues and eigenfunctions of
all Hamiltonians in the hierarchy. The energy levels appearing in the hierarchy
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are illustrated schematically below.
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The pair of supersymmetric partner potentials V±(x) defined by (7) and (13)
represents a shape invariant if they satisfy the condition [8]

V+(x; a1) = V−(x; a2) +R(a1), (19)

where a1 is a set of parameters, while a2 = f(a1) andR(a1) are functions of a1

but not of x. In this case all supersymmetric partner potentials appearing in the
hierarchy of Hamiltonians can be simply expressed in the form of V−, so that

H(1) = − h2

2m

d2

dx2
+ V−(x; a1)

H(2) = − h2

2m

d2

dx2
+ V−(x; a2) +R(a1)

.............................................

H(m) ≡ − h2

2m

d2

dx2
+ V−(x; am) +

m−1∑

k=1

R(ak),

where am = f (m−1)(a1). The gs energies of the different Hamiltonians are

E
(m)
0 =

m−1∑

k=1

R(ak) + E
(1)
0 . (20)

The complete energy spectrum of H(1) is

E(1)
n =

n∑

k=1

R(ak), with E(1)
0 = 0, n = 0, 1, 2, . . . (21)

while the corresponding eigenfunctions are determined by

ψ(1)
n (x; a1) v A†(x; a1)A†(x; a2)...A†(x; an)ψ

(1)
0 (x; an+1), (22)

where the operators A†(x; an) are determined by (5) with W (x; an) being a
function of V−(x; an) and

∑n−1
k=1 R(ak).
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3 SUSY-QM Formalism in the CQOM Model

3.1 The problem of soft quadrupole-octupole vibrations and rotations

The Hamiltonian of quadrupole-octupole vibrations and rotations has been taken
in the form [15]– [18]

Hqo = − ~2

2B2

∂2

∂β2
2

− ~2

2B3

∂2

∂β2
3

+ U(β2, β3, I), (23)

where β2 and β3 are axial quadrupole and octupole variables and the potential is

U(β2, β3, I) =
1

2
C2β2

2 +
1

2
C3β3

2 +
X(I)

d2β2
2 + d3β2

3

. (24)

Here B2 (B3), C2 (C3) and d2 (d3) are quadrupole (octupole) mass, stiffness
and inertia parameters, respectively, and X(I) involves the angular momen-
tum dependence of the spectrum specified in [15, 16]. Under the assumption
of coherent quadrupole-octupole oscillations with a frequency ω =

√
C2/B2 =√

C3/B3 ≡
√
C/B and by introducing ellipsoidal coordinates β2 =

√
d/d2η

cosφ, β3 =
√
d/d3η sinφ, with d = (d2 + d3)/2, one obtains the Schrödinger

equation for (23) with separated variables

d2ψ(η)

dη2
+

1

η

dψ

dη
+

2B

~2

[
E − ~2

2B

k2

η2
− 1

2
Cη2 − X(I)

dη2

]
ψ(η) = 0 (25)

∂2

∂φ2
ϕ(φ) + k2ϕ(φ) = 0 . (26)

By substituting

ψ(η) = η−1/2ϕ(η) (27)

the radial equation is obtained in the form

d2ϕ(η)

dη2
+

2B

~2

[
E − ~2

2B

k2

η2
− 1

2
Cη2 − X(I)

dη2
+

1

4

~2

2Bη2

]
ϕ(η) = 0. (28)

3.2 Shape invariance of the CQOM potential

Applying the SUSY-QM procedure to Eq. (28), we consider the effective poten-
tial in the ground state (E = E0) as the first (lowest) superpartner potential

V−(η) = Veff =
1

2
Bω2η2 +

~2

2Bη2

(
s2 − 1

4

)
− E0, (29)

where s = s(k, I) =
√
k2 + bX(I), with b = 2B/~2d. (Note that in Refs.

[15]– [18] the quantity s includes an additional factor 1/2 ). To find the SUSY
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partner potential V+, Eq.(13), the Riccati equation (7) for the superpotential
W (η) has to be solved. We search W (η) in the form

W (η) = a1η −
a2

η
, (30)

where a1 and a2 are parameters to be determined. By substituting (29) and
(30) into the left and right hand sides of (7), respectively, and after equating the
powers of η in both sides one finds

a1 = ω

√
B

2
, a2 =

~√
2B

(s+ 1/2), E0(s) = ~ω(1 + s) . (31)

As a result the superpotential W (η) becomes

W (η) = W (η, s) =

√
B

2
ωη − ~√

2B

(s+ 1/2)

η
, (32)

and the potentials V−(η, s) and V+(η, s) which now determine the partner Hamil-
tonians H(1) and H(2) are obtained in the form

V−(η; s) =
1

2
Bω2η2 +

~2

2Bη2
(s− 1/2)(s+ 1/2)− ~ω(s+ 1) (33)

V+(η; s) =
1

2
Bω2η2 +

~2

2Bη2
(s+ 1/2)(s+ 3/2)− ~ωs . (34)

It is easily seen that V− and V+ satisfy the shape invariance condition Eq. (19)
with R(s) = R = 2~ω not depending on s.

3.3 SUSY-QM hierarchy and solution of the CQOM eigenproblem

By continuing the above procedure one gets the SUSY-CQOM potential partners
in the following general form

V−(η; s+m− 1) =
1

2
Bω2η2 +

~2

2Bη2
(s− 1

2
+m− 1)(s+

1

2
+m− 1)

+ 2(m− 1)~ω,

V−(η; s+m) =
1

2
Bω2η2 +

~2

2Bη2
(s− 1

2
+m)(s+

1

2
+m)

+ 2m~ω.

As a result the SUSY-hierarchy Hamiltonians and their ground-state energies
are obtained in the following schematic form
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H(1) → V−(s) + E0(s)→ E
(1)
0 (s)

H(2) → V−(s+ 1) + 2~ω + E0(s)→ E
(2)
0 (s) = E

(1)
1 (s)

H(3) → V−(s+ 2) + 4~ω + E0(s)→ E
(3)
0 (s) = E

(1)
2 (s)

................................................................................

H(m) → V−(s+m− 1) + 2(m− 1)~ω + E0(s)→ E
(m)
0 (s) = E

(1)
m−1(s)

H(m+1) → V−(s+m) + 2m~ω + E0(s)→ E
(m+1)
0 (s) = E(1)

m (s) .

According to (21) the energies En(s) ≡ E
(1)
n (s), n = 0, 1, 2, . . . form the

full spectrum of H(1) which enters the radial CQOM equation (28). Thus one
obtains the CQOM spectrum given in [15]

En(s) = Enk(I) = ~ω [2n+ s(k, I) + 1] = ~ω
[
2n+ 1 +

√
k2 + bX(I)

]
. (35)

The ground state wave function for H(1), with n = 0, is obtained by intro-
ducing W (η, s), Eq (32), into Eq. (10)

f0(η, s) = N0 exp

[
−
√

2B

~

∫ η
(√

B

2
ωx− ~√

2B

(s+ 1/2)

x

)
dx

]

= N0 exp

(
−cη

2

2

)
η(s+1/2), (36)

where c =
√
BC/~ and the normalization factor is N0 =

√
2cs+1

Γ(s+1) . Further, by
applying the general expression (22) for the next state (n = 1) one finds

f1(η, s) = N1A
†(η, s)f0(η, s+ 1)

= N1(−cη2 + s+ 1) exp

(
−cη

2

2

)
η(s+1/2) , (37)

with N1 =
√

2cs+1

Γ(s+2) . By continuing this procedure, one finds by induction the
known radial wave function of CQOM [17]

fn(η, s) = ψIn,k(η) =

√
2cΓ(n+ 1)

Γ(n+ 2s+ 1)
e−cη

2/2(cη2)sL2s
n (cη2) , (38)

which involves the generalized Laguerre polynomials in the variable η.

4 The Meaning of SUSY and Its Breaking in CQOM: Discussion

The quadrupole-octupole vibration spectrum obtained by the analytic expression
(35) is schematically illustrated in Figure 1. It consists of k = 1, 2, 3 . . . level-
sequences built on different n = 0, 1, 2, . . . excitations. In addition, on each
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Figure 1. Schematic quadrupole-octupole vibration levels (without rotations) and SUSY-
QM hierarchy (in blue) of the bandhead states in the CQOM model.

sequences built on different n = 0, 1, 2, . . . excitations. In addition, on each
k-level a rotation band (not given for simplicity) is built, with the allowed an-
gular momentum values depending on parity conditions imposed by the model
(see below). The different n-sequences have identical structures and are equally
shifted by 2~ω. It is seen that the bandheads (n = 0, 1, 2, . . . , k = 1, I = Ibh)
of these sequences generate the full SUSY hierarchy of levels (given in Fig. 1 in
blue) which appear in the CQOM scheme. Here Ibh is the lowest possible (band-
head) angular momentum for given n, which is 0 for the even-even nuclei and
1/2 for odd-mass nuclei. The set of bandhead levelsEn,k=1(Ibh) determines the
SUSY-QM content of the CQOM model. It suggests that the assumed coherent
quadrupole-octupole motion in nuclei possesses a genuine SUSY inherent for the
radial vibration mode. At the same time the development of the k-sequences (i.e.
the angular-mode) and the further superposed rotation levels can be interpreted
as the result of a dynamical breaking of SUSY in which the full spectrum of the
system is generated. In the present context the term “dynamical” means that
the symmetry breaking is due to the involvement of additional dynamic modes
(angular vibrations and rotations) represented by the quantum numbers k and I
outside of the one-dimensional radial motion.

Further, by applying the model scheme to the quadrupole-octupole spec-
tra one imposes geometrically motivated parity conditions. In the alternating-
parity bands of even-even nuclei the positive-parity states correspond to an odd
k-value, while the negative-parity states correspond to even k [15, 17]. In the
quasi parity-doublets of odd-mass nuclei this correspondence depends on the

10

Figure 1. Schematic quadrupole-octupole vibration levels (without rotations) and SUSY-
QM hierarchy (in blue) of the bandhead states in the CQOM model.

k-level a rotation band (not given for simplicity) is built, with the allowed an-
gular momentum values depending on parity conditions imposed by the model
(see below). The different n-sequences have identical structures and are equally
shifted by 2~ω. It is seen that the bandheads (n = 0, 1, 2, . . . , k = 1, I = Ibh) of
these sequences generate the full SUSY hierarchy of levels (given in Figure 1 in
blue) which appear in the CQOM scheme. Here Ibh is the lowest possible (band-
head) angular momentum for given n, which is 0 for the even-even nuclei and
1/2 for odd-mass nuclei. The set of bandhead levels En,k=1(Ibh) determines
the SUSY-QM content of the CQOM model. It suggests that the assumed co-
herent quadrupole-octupole motion in nuclei possesses a genuine SUSY inherent
for the radial (η) vibration mode. At the same time the development of the k-
sequences (i.e. the angular (φ) mode) and the further superposed rotation levels
can be interpreted as the result of a dynamical breaking of SUSY in which the full
spectrum of the system is generated. In the present context the term “dynami-
cal” means that the symmetry breaking is due to the involvement of additional
dynamic modes (angular vibrations and rotations) represented by the quantum
numbers k and I outside of the one-dimensional radial motion.

Further, by applying the model scheme to the quadrupole-octupole spec-
tra one imposes geometrically motivated parity conditions. In the alternating-
parity bands of even-even nuclei the positive-parity states correspond to an odd
k-value, while the negative-parity states correspond to even k [15, 17]. In the
quasi-parity-doublets of odd-mass nuclei this correspondence depends on the
odd-particle parity [16, 18]. The difference in the two k-values generates the
parity-shift effect. This is illustrated for the alternating-parity bands in Figure 2
by taking the lowest possible values k = 1 and 2. The magnitude of the parity
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Figure 2. Schematic structure of alternating-parity spectrum in CQOM with small (left
part) and large (right) parity shift. The energy levels are obtained by (35) with X(I) =
[d0 + I(I + 1)]/2, where d0 is a parameter of the potential.

odd-particle parity [16, 18]. The difference in the two k-values generates the
parity shift effect. This is illustrated for the alternating-parity bands in Fig. 2
by taking the lowest possible values k = 1 and 2. The magnitude of the par-
ity shift can be adjusted by changing the parameters values (especially b and/or
ω), as seen by comparing the spectra in the left and right parts of Fig. 2. (The
shift is indicated by blue double-arrows). However, if the parity shift differs for
the different sequences in given spectrum, one needs to consider different cou-
ples of k-values, like (1, 2), (1, 4), (1, 6) as shown in Fig. 2 or others (as e.g.
in [17]), in order to reproduce the observed energy displacements. This means
that a deeper mechanism of symmetry breaking may take place when the CQOM
model scheme is applied to reproduce the realistic quadrupole-octupole spectra.

Now we are able to examine to what extent the so defined broken SUSY man-
ifests in the experimental spectra of nuclei with quadrupole-octupole degrees of
freedom. We can say that if these spectra possess it as a generic symmetry one
should observe different sets of (almost) identical band-structures – alternating-
parity bands in even-even nuclei and quasi parity-doublets in odd-mass nuclei –
shifted one from another by (almost) the same energy intervals. Indeed by look-
ing into data one finds several examples where such structure of the spectrum
can be identified. Good examples are observed for the nuclei 152Sm, 154Gd and
100Mo whose CQOM-theoretical and experimental spectra are given in Figs. 1,
3 and 7, respectively of Ref. [17]. In the three nuclei it is seen that the struc-
tures of the yrast and non-yrast alternating-parity sequences are very similar and
in addition in 154Gd the spacing between the three 0+ bandheads is almost the
same. Reasonable examples in odd-mass nuclei are the spectra of 223Ra (Fig. 2
in Ref. [18]) and 237U (Fig. 4 in Ref. [20]).

From another side a wider view on experimental data shows the presence of
quadrupole-octupole spectra in which the different energy sequences are neither
quite identical nor really equidistantly displaced. Such are the spectra in 154Sm,
156Gd, 158Gd and 236U (Figs. 2, 4, 5 and 6 in Ref. [17]) as well as 161Dy
and 239Pu (Figs. 2 and 4 in Ref. [21]). In these cases, especially in even-even
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[d0 + I(I + 1)]/2, where d0 is a parameter of the potential.

odd-particle parity [16, 18]. The difference in the two k-values generates the
parity shift effect. This is illustrated for the alternating-parity bands in Fig. 2
by taking the lowest possible values k = 1 and 2. The magnitude of the par-
ity shift can be adjusted by changing the parameters values (especially b and/or
ω), as seen by comparing the spectra in the left and right parts of Fig. 2. (The
shift is indicated by blue double-arrows). However, if the parity shift differs for
the different sequences in given spectrum, one needs to consider different cou-
ples of k-values, like (1, 2), (1, 4), (1, 6) as shown in Fig. 2 or others (as e.g.
in [17]), in order to reproduce the observed energy displacements. This means
that a deeper mechanism of symmetry breaking may take place when the CQOM
model scheme is applied to reproduce the realistic quadrupole-octupole spectra.

Now we are able to examine to what extent the so defined broken SUSY man-
ifests in the experimental spectra of nuclei with quadrupole-octupole degrees of
freedom. We can say that if these spectra possess it as a generic symmetry one
should observe different sets of (almost) identical band-structures – alternating-
parity bands in even-even nuclei and quasi parity-doublets in odd-mass nuclei –
shifted one from another by (almost) the same energy intervals. Indeed by look-
ing into data one finds several examples where such structure of the spectrum
can be identified. Good examples are observed for the nuclei 152Sm, 154Gd and
100Mo whose CQOM-theoretical and experimental spectra are given in Figs. 1,
3 and 7, respectively of Ref. [17]. In the three nuclei it is seen that the struc-
tures of the yrast and non-yrast alternating-parity sequences are very similar and
in addition in 154Gd the spacing between the three 0+ bandheads is almost the
same. Reasonable examples in odd-mass nuclei are the spectra of 223Ra (Fig. 2
in Ref. [18]) and 237U (Fig. 4 in Ref. [20]).

From another side a wider view on experimental data shows the presence of
quadrupole-octupole spectra in which the different energy sequences are neither
quite identical nor really equidistantly displaced. Such are the spectra in 154Sm,
156Gd, 158Gd and 236U (Figs. 2, 4, 5 and 6 in Ref. [17]) as well as 161Dy
and 239Pu (Figs. 2 and 4 in Ref. [21]). In these cases, especially in even-even
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Figure 2. Schematic structure of alternating-parity spectrum in CQOM with small (upper
part) and large (lower part) parity shift. The energy levels are obtained by (35) with
X(I) = [d0 + I(I + 1)]/2, where d0 is a parameter of the potential.

shift can be adjusted by changing the parameters values (especially b and/or ω),
as seen by comparing the spectra in the upper and the lower parts of Figure 2.
(The shift is indicated by blue double-arrows). However, if the parity-shift dif-
fers for the different sequences in given spectrum, one needs to consider different
pairs of k-values, like (1, 2), (1, 4), (1, 6) as shown in Figure 2 or others (as e.g.
in [17]), in order to reproduce the observed energy displacements. This means
that a deeper mechanism of symmetry breaking may take place when the CQOM
model scheme is applied to reproduce the realistic quadrupole-octupole spectra.

Now we are able to examine to what extent the so-defined broken SUSY
manifests in the experimental spectra of nuclei with quadrupole-octupole de-
grees of freedom. We can say that if these spectra possess it as a generic sym-

42



Coherent Quadrupole-Octupole States from a SUSY-QM Hamiltonian Hierarchy ...

metry one should observe different sets of (almost) identical band-structures –
alternating-parity bands in even-even nuclei and quasi-parity-doublets in odd-
mass nuclei – shifted one from another by (almost) the same energy intervals.
Indeed by looking into data one finds several examples where such structure
of the spectrum can be identified. Good examples are observed for the nuclei
152Sm, 154Gd and 100Mo whose CQOM-theoretical and experimental spectra
are given in Figures 1, 3 and 7, respectively of Ref. [17]. In the three nuclei it
is seen that the structures of the yrast and non-yrast alternating-parity sequences
are very similar and in addition in 154Gd the spacing between the three 0+ band-
heads is almost the same. Reasonable examples in odd-mass nuclei are the spec-
tra of 223Ra (Figure 2 in Ref. [18]) and 237U (Figure 4 in Ref. [20]).

From another side a wider look on experimental data shows the presence of
quadrupole-octupole spectra in which the different energy sequences are neither
quite identical nor really equidistantly displaced. Such are the spectra in 154Sm,
156Gd, 158Gd and 236U (Figures 2, 4, 5 and 6 in Ref. [17]) as well as 161Dy
and 239Pu (Figures 2 and 4 in Ref. [21]). In these cases, especially in even-
even nuclei, the different band structures (including parity-shifts) are reproduced
by the model through introducing quite different pairs of k-values, whereas the
energy displacements are reproduced by taking the lowest k larger than 1. We
should remark that in odd-mass nuclei the symmetry is additionally violated by
the odd nucleon which not only affects the even-even core through the parity
and Coriolis effects, but also may add a quasiparticle excitation energy to the
doublet bandheads.

5 Conclusion

We have shown that the CQOM formalism, in which the potential is a shape
invariant in the space of the effective quadrupole-octupole deformation, can be
interpret in terms of the SUSY-QM approach. As a result the radial quadrupole-
octupole vibrations of the nucleus are associated with a SUSY hierarchy of
Hamiltonians, which together with the angular and rotation modes provide the
full model spectrum of the system. This suggests that a nucleus capable of per-
forming coherent quadrupole-octupole motions may posses a genuine SUSY,
which determines the basic structure of its collective excitation spectrum. The
considered examples show that if present in quadrupole-octupole spectra, the
SUSY should be necessarily and multilaterally broken in dependence on var-
ious conditions and particular structure effects inherent for the even-even and
odd-mass nuclei. Nevertheless, the application of the SUSY-QM concept to
the CQOM model approach allows one to get a deeper insight into the sym-
metry properties of complex deformed nuclei as well as to better understand
(and justify) the proposed model classification of nuclear quadrupole-octupole
excitations. This result supports the relevance of the model scheme in nuclear
quadrupole-octupole spectra and its applicability as a basis to solve the more
general problem of quadrupole-octupole motions beyond the restrictions im-
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posed by the coherent mode.
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