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Abstract. We present the most recent version of the Barcelona-Catania-Paris-
Madrid energy density functional which is largely based on ab initio calculated
symmetric and neutron matter equations of state. This functional contains two
free parameters related to the nuclear matter and surface energies. An rms devi-
ation of 1.58 MeV is obtained from the fit of these parameters to 579 measured
nuclear masses. This deviation compares favourably with the one obtained us-
ing other mean field theories. This functional is applied to describe the structure
of Neutron Stars from the outer crust to the core. Comparison with other Neu-
tron Star equations of state are discussed. The relevance of the crust equation of
state for the Neutron Star radius is pointed out.

1 Introduction

The physics of atomic nuclei and nuclear systems is very rich but extremely com-
plicated to describe. In principle one should start from the bare nucleon-nucleon
interaction which is well determined at long distances although at short distances
the repulsive core is less known. The short-range in-medium correlations (Pauli
blocking) cancel out the repulsive core and yield a smooth in medium interac-
tion. Handling of the short range correlations require Brueckner like methods
which are extremely hard to implement in finite nuclei. Therefore, the smooth
effective interaction is replaced by effective interactions like the Skyrme and
Gogny forces or the Relativistic Mean Field (RMF) model.

The non-relativistic zero-range Skyrme [1] and finite-range Gogny [2] forces
consist of the central, Coulomb and spin-orbit contributions plus a phenomeno-
logical density-dependent term. In the relativistic models it is assumed that
baryons interact by exchanging scalar and vector mesons and are described
through a relativistic Lagrangian [3]. There are several hundreds of Skyrme
and RMF interactions of different type whose parameters are usually fitted to
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reproduce a few nuclear matter properties and the ground state of a reduced set
of finite nuclei. Most of these interactions are taylored to describe specific prob-
lems. Although many of such parametrizations give a more or less reasonable
description of stable nuclei, they predict divergent results when extrapolated to
regions where there is not experimental data. To cure these deficiencies, modern
parametrizations introduce more information from symmetric and neutron mat-
ter in order to constrain their parameters. On the other hand, the binding energy
of all the nuclei experimentally known are used as input to fit the parameters of
the interaction. Skyrme SLy, SV, UNEDFX, HFB-21 and Gogny D1N and D1M
are examples of these modern effective interactions.

In a set of recent papers [4–6] we have presented a new energy density func-
tional (EDF) called BCPM (Barcelona-Catania-Paris-Madrid) aimed to describe
ground-state binding energies of finite nuclei with a quality similar to the one
provided by successful Skyrme and Gogny forces. Inspired by the Kohn-Sham
(KS) theory, instead of starting from an effective interaction, we directly con-
struct an EDF that contains a bulk part obtained from ab initio microscopic
calculations of Brueckner-Hartree-Fock (BHF) type in symmetric and neutron
matter, and a phenomenological surface part together with the Coulomb and
spin-orbit contributions. This BCPM EDF contains eventually only two open
parameters which are fitted to reproduce the experimental binding energy of 579
spherical and deformed even-even nuclei.

We use this microscopically based BCPM EDF to describe the structure of
neutron stars (NS) from the outer crust to the core and compare with few other
EOS that encompass the whole NS structure. In particular we compare our re-
sults with the predictions of the EOSs of Lattimer and Swesty (LS) [7], Shen [8]
and Douchin and Haensel [9]. More recently, other EOSs covering the whole
NS have been derived by the Brussels-Montreal group [10] using the modern
Skyrme forces BSk19, BSk20 and BSk21 [11]. Some first results about the
BCPM EOS have been reported recently [12].

The paper is organized as follows. In the first section we briefly revise the
BCPM EDF. The second section is devoted to the description of the crust of NS.
In the third section we discuss the liquid core and the mass-radius relationship.
Finally our conclusions are presented in the last section.

2 The BCPM Energy Density Functional

The BCPM EDF is based on the Kohn-Sham density functional theory (KS-
DFT) where the one-body density ρ(r) plays a central role. In this theory one
introduces an auxiliary set of A orthonormal orbitals φi(r, σ,q), where A is the
nucleon number and σ and q the spin and isospin indices, respectively, which
allows to express the one-body density as a Slater determinant build up with
the orbitals φi,i.e ρ(r) =

∑
i,σ,q |φi(r, σ,q)|2. Within the KS-DFT the energy

splits into two parts E = T0[ρ] + W [ρ]. The uncorrelated kinetic energy T0 is
written in terms of the orbitals as T0 = (~2/2m)

∑
i,σ,q |∇φi(r, σ,q)|2. The
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interacting part W [ρ] contains the potential energy and the correlated part of the
kinetic energy. The potential energy is given by the sum of the nuclear, Coulomb
and spin-orbit contributions:

E = T0 + EN + ECoul + Es−o. (1)

The nuclear potential energy is divided into a bulk part and a surface contribu-
tion, i.e. EN = EbulkN + EsurfN . The bulk part is obtained from the interaction
energy term of the microscopic EOS in symmetric and neutron matter. These
EOSs are calculated in good accuracy in the Brueckner two hole lines approach
with the continuous choice for the single-particle potential [13]. In the BHF
approximation the energy per particle reads:

E

A
=

3

5

~2k2
F

2m
+

1

2ρ

∑

k,k′<kF

〈
kk′
∣∣G[ρ; e(k) + e(k′)]

∣∣kk′
〉
a
, (2)

where G(ρ, ω) is the Brueckner reaction matrix solution of the Bethe-Goldstone
equation

G[ρ;ω] = V +
∑

ka,kb

V
|kakb > Q < kakb|
ω − e(ka)− e(kb)

G[ρ;ω] . (3)

In (2) V is the bare nucleon-nucleon interaction, ρ – the number density,

e(k) =
~2k2

2m
+ U(k, ρ) (4)

is the single-particle energy andQ is the Pauli operator that determines the prop-
agation of intermediate baryon pairs. The single-particle potential U(k, ρ) using
the continuous choice reads

U(k; ρ) = Re
∑

k′<kF

〈
kk′
∣∣G[ρ; e(k) + e(k′)]

∣∣kk′
〉
a
, (5)

In (2) and (5) the subscript ”a” indicates antisymmetrized matrix elements.
Eqs.(2)-(5) constitute a coupled system of equations that has to be solved self-
consistently. Once the G matrix is known, the energy per particle is easily com-
puted with (1).

This BHF calculation has been performed using the Argonne v18 potential as
two-nucleon interaction. To reproduce the correct saturation point in symmetric
nuclear matter, three-body forces based on the so-called Urbana model have to
be added (see [6] and [12] for details). These EOSs are compatible with phe-
nomenological constraints from heavy-ion reactions as well from the analysis of
astrophysical observations [14].

The bulk part of the BCPM EDF for finite nuclei stems directly from these
microscopic EOSs in the spirit of the LDA (Local Density Approximation). For
computational purposes, an educated fifth degree polynomial fit as a function of
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the total density is performed on top of the microscopic calculation constrained
to have the saturation point at E/A=-16 MeV at a density ρ0=0.16 fm−3. The
fitting polynomials Ps(ρ) and Pn(ρ) for symmetric and for neutron matter, re-
spectively are given in Table 1 of [6].

The bulk energy contribution to the EDF is obtained by a quadratic inter-
polation between Ps(ρ) and Pn(ρ) in terms of the asymmetry parameter β =
(ρn − ρp)/ρ between the symmetric and neutron EOS:

EbulkN [ρp, ρn] =

∫
d~r
[
Ps(ρ)(1− β2) + Pn(ρ)β2

]
ρ (6)

The surface contribution to the interacting nuclear energy is written as:

EsurfN [ρn, ρp] =
1

2

∑

t,t′

∫∫
d~rd~r′ρt(~r)vt,t′(~r − ~r′)ρt′(~r′) (7)

where the index t is the label for neutron and protons and vt,t = Vt,te
−r2/r20tt

is the finite range form factor of Gaussian type. The strengths VL(t = t′) and
VU (t 6= t′) have been determined in such a way that in the uniform density limit
of (7) reproduces the ρ2 term of the bulk part (6). This implies that Vnn = Vpp =

2b̄1
π3/2r30Lρ0

and Vnp = Vpn = 4a1−2b̄1
π3/2r30Uρ0

, where b̄1 = b1ρ0/ρ0n, being a1 and

b1 the coefficients of the ρ2 of the polynomials Pn(ρ) and Pn(ρ), respectively.
Therefore, the ranges r0L and r0U are the free parameters to be fitted using finite
nuclei data.

The Coulomb term in (1) contains the standard direct and the Slater contribu-
tions calculated from the proton density. The spin-orbit term in (1) has the same
form as in the Skyrme and Gogny interactions with a strength W0 that is also an
open parameter. The finite nuclei calculations are performed in the mean-field
approximation using the Hartree-Fock-Bogoliubov (HFB) approximation. The
pairing interaction is a zero-range density dependent force adjusted to reproduce
the neutron gap predicted by the Gogny force in symmetric nuclear matter with
m∗ = m [15]. We also include in our calculation the two-body center of mass
correction using a pocket formula based on the harmonic oscillator [16]. These
HFB calculations in finite nuclei are restricted to axially symmetric solutions
computed in a harmonic oscillator basis using an approximated second-order
gradient method. The calculated binding energy is the HFB one supplemented
with the rotational energy correction and an estimate of the finite size of the basis
(see [6] for details).

The three initial parameters, i.e. the ranges r0L, r0U and the strength of the
spin-orbit interaction W0, are fitted to minimize the rms deviation for the bind-
ing energies: σ(E)2 =

∑N
1 [Bth(i) − Bexp(i)]

2/N where the sum runs over
a set of 579 even-even nuclei with known binding energies [17]. From these
fits it is found that σ(E) has a very smooth dependence on W0 and its mini-
mal value is always around 90 MeV fm5. Another relevant information is that
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computational purposes, an educated fifth degree polynomial fit as a function of
the total density is performed on top of the microscopic calculation constrained
to have the saturation point atE/A=-16 MeV at a densityρ0=0.16 fm−3. The
fitting polynomialsPs(ρ) andPn(ρ) for symmetric and for neutron matter, re-
spectively are given in Table 1 of [6].

The bulk energy contribution to the EDF is obtained by a quadratic inter-
polation betweenPs(ρ) andPn(ρ) in terms of the asymmetry parameterβ =
(ρn − ρp)/ρ between the symmetric and neutron EOS:

Ebulk
N [ρp, ρn] =

∫
d~r

[
Ps(ρ)(1 − β2) + Pn(ρ)β2

]
ρ (6)

The surface contribution to the interacting nuclear energyis written as:

Esurf
N [ρn, ρp] =

1

2

∑

t,t′

∫∫
d~rd~r′ρt(~r)vt,t′(~r − ~r′)ρt′(~r′) (7)

where the indext is the label for neutron and protons andvt,t = Vt,te
−r2/r2

0tt

is the finite range form factor of Gaussian type. The strengths VL(t = t′) and
VU (t 6= t′) have been determined in such a way that in the uniform densitylimit
of (7) reproduces theρ2 term of the bulk part (6). This implies thatVnn = Vpp =

2b̄1
π3/2r3

0Lρ0
andVnp = Vpn = 4a1−2b̄1

π3/2r3
0Uρ0

, whereb̄1 = b1ρ0/ρ0n, beinga1 and

b1 the coefficients of theρ2 of the polynomialsPn(ρ) andPn(ρ), respectively.
Therefore, the rangesr0L andr0U are the free parameters to be fitted using finite
nuclei data.

The Coulomb term in (1) contains the standard direct and the Slater contribu-
tions calculated from the proton density. The spin-orbit term in (1) has the same
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Figure 1. Binding energy differences as a function of the neutron number predicted by
the BCPM EDF.
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Figure 1. Binding energy differences as a function of the neutron number predicted by
the BCPM EDF.

∆B = Bth−Bexp shows a linear dependence onA and its slope depends on the
energy per particle E/A at the minimum of the polynomial fit of the symmetric
nuclear matter Ps(ρ). It is found that E/A=-15.98 MeV yields the lowest σ(E)
value and almost zero slope. It is also found that the minimal value of σ(E) is
achieved for r0L = r0U ' 0.66 fm. After all these considerations we conclude
that E/A=-15.98 MeV, W0=90.5 MeV fm5 and r0L = r0U=0.659 fm is the best
choice for the open parameters of BCPM EDF giving σ(E)=1.58 MeV. The dif-
ferences ∆B computed with these optimal parameters are displayed in Figure 1.
We have also computed the charge radii using a proton radius of 0.875 fm. The
rms value σ(R) obtained using 313 experimental values of even-even nuclei [18]
is 0.027 fm.

We compare our results with those obtained using different parametrizations
of the Gogny force. The σ(E) and σ(R) values obtained in the same condi-
tions using the D1S and D1M Gogny forces are 2.13 MeV and 0.037 fm and
1.47 MeV and 0.028 fm, respectively. The analysis of the quadrupole and oc-
tupole deformations in the ground-state and fission barriers [19] reveal that the
predictions of the BCPM EDF are quite similar to the ones of the D1S and D1M
forces. Comparisons of the BCPM EDF calculations with the results provided
by modern Skyrme interactions shows that the energy rms for a similar number
of nuclei is also similar to the one obtained with the BCPM EDF. Only the HFB-
21 parametrization obtained by the Brussels group [11] exhibit a σ(E) value of
0.58 MeV. However HFB-21 include a larger set of odd and even nuclei (2149)
and also the model includes some phenomenological aspects not considered in
the BCPM EDF.
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X. Viñas, M. Baldo, G.F. Burgio, M. Centelles, L.M. Robledo, B.K. Sharma

3 The Crust of the Neutron Stars

Now we use the BCPM EDF to compute the EOS of nonaccreting cold NS from
the solid outer core to the liquid core of the star. To use the same EDF for the
whole structure of the star allows to obtain a consistent and unified description
which stems from underlying microscopic grounds. We will discuss this BCPM
EOS and will perform comparisons with other available EOS devised to cover
the whole structure of the NS. It is assumed that the crust of a NS has the struc-
ture of regular lattice which is treated in the Wigner-Seitz (WS) approximation
where the unit cell, with a cubic or more complicated structures, is replaced by
a spherical cell with the same volume.

3.1 The outer crust

The outer crust of a NS is composed by neutron rich nuclei and free electrons
at densities approximately between 104 and 4 × 1011 g/cm3 above which the
neutrons start to drip from the nuclei. The outer crust is fully ionized and the
atomic nuclei arrange themselves in a body-centered cubic lattice in order to
minimize the Coulomb repulsion among them. Nuclei are stabilized against
β decay by the surrounding electron gas. At very low densities around 104

g/cm3, the lattice is populated by 56Fe nuclei and the effect of the electrons is
negligible. When the average baryon density increases, the importance of the
electrons increases too, and becomes energetically favourable for the system to
reduce the proton ratio by electron captures with the energy carried away by
neutrinos. Consequently, the system evolves towards a Coulomb lattice of more
and more neutron rich nuclei until the neutron drip density is reached and the
inner crust of NS begins.

The outer crust of NS is studied following the well known formalism of
Baym, Pethick and Sutherland [20]. In this model the energy density at a given
density is given by the sum of the nuclear, electronic and lattice parts, i.e.
E(A,Z, ρB) = En + Eelec + El. The nuclear contribution is the nuclear en-
ergy per nucleon that is obtained using the BCPM EDF described in the previ-
ous Section. The electronic part is provided by the relativistic free Fermi gas of
electrons which reads:

Eelec =
m4
e

8π2

[
xe
(
2x2

e + 1
)√

x2
e + 1− ln

(
xe +

√
x2
e + 1

)]
, (8)

with xe = peF /me, being peF the electron Fermi momentum and me its mass.
The lattice contribution corresponding to the interaction between protons located
in the lattice and free electrons is approximated by a Coulomb mass formula-like
term [21].

The minimization of the energy per baryon at given baryonic density allows
to obtain the optimal nuclear composition (A,Z) as well as the pressure cor-
responding at such a density, i.e. the EOS of the outer crust. Notice that only
the electronic and lattice terms contribute to the pressure in the outer crust, i.e.
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P = Pelect + Pl. The BCPM EOS corresponding to the outer crust is displayed
in Figure 2, and compared with the predictions of the Lattimer-Swesty (LS)
and Shen models that are devised to describe the whole EOS. The BCPM EOS
agrees well with the LS EOS and both of them show some discrepacies with the
Shen EOS in this range of densities. From this Figure we see that the BCPM
EOS shows small jumps in the average density for some values of the pressure.
These jumps appear when the equilibrium nucleus change to another varying its
composition(A, Z). These jumps are absent in the LS and Shen EOS because
they are of semiclassical type and(A, Z) vary in a continuous way in this case.
The BCPM EOS in the outer crust lies close to the LS and Shen predictions.
This result seems to point out that in the outer crust shell effects may be not
very relevant to calculate the pressure although they are essential to estimate the
composition of the most stable nucleus as a function of the average density.

3.2 The inner crust

In our model the inner crust EOS is obtained by means of a self-consistent
Thomas-Fermi (TF) calculation. There are two comments about the choice of
this method. On the one hand, it is expected, as it happens in the outer crust
calculations, that shell effects, neglected in the TF approach, have little impact
on the EOS. On the other hand, TF calcuations can easily be performed using
not only spherical WS but also cells with different geometries allowing to study
different pasta phases. The total energy of an ensemble of neutron, proton and
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Figure 2. EOS corresponding to the outer crust of a Neutron Star computed with different
models.

7

Figure 2. EOS corresponding to the outer crust of a Neutron Star computed with different
models.

P = Pelect + Pl. The BCPM EOS corresponding to the outer crust is displayed
in Figure 2, and compared with the predictions of the Lattimer-Swesty (LS)
and Shen models that are devised to describe the whole EOS. The BCPM EOS
agrees well with the LS EOS and both of them show some discrepacies with the
Shen EOS in this range of densities. From this Figure we see that the BCPM
EOS shows small jumps in the average density for some values of the pressure.
These jumps appear when the equilibrium nucleus change to another varying its
composition (A,Z). These jumps are absent in the LS and Shen EOS because
they are of semiclassical type and (A,Z) vary in a continuous way in this case.
The BCPM EOS in the outer crust lies close to the LS and Shen predictions.
This result seems to point out that in the outer crust shell effects may be not
very relevant to calculate the pressure although they are essential to estimate the
composition of the most stable nucleus as a function of the average density.

3.2 The inner crust

In our model the inner crust EOS is obtained by means of a self-consistent
Thomas-Fermi (TF) calculation. There are two comments about the choice of
this method. On the one hand, it is expected, as it happens in the outer crust
calculations, that shell effects, neglected in the TF approach, have little impact
on the EOS. On the other hand, TF calcuations can easily be performed using
not only spherical WS but also cells with different geometries allowing to study
different pasta phases. The total energy of an ensemble of neutron, proton and
electrons in a WS cell of volume Vc is given by

E =

∫
dV

[
H(ρn, ρp) + Eelec + Ecoul

− 3

4

( 3

π

)1/3

e2
(
ρp

4/3 + ρe
4/3
)

+mnρn +mpρp

]
, (9)
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where the nuclear energy density in the TF approach reads

H (ρn, ρp) =
~2

2mn

3

5

(
3π2
)2/3

ρ5/3
n +

~2

2mp

3

5

(
3π2
)2/3

ρ5/3
p +V (ρn, ρp) (10)

and the Coulomb direct energy is given by

Ecoul =
1

2
(ρp(r)− ρe) (Vp(r)− Ve(r))

=
1

2
(ρp(r)− ρe)

∫
e2

|r− r′| (ρp(r
′)− ρe) dr′. (11)

where it is assumed that the electrons are uniformly distributed in the cell. The
non-interacting part of the electrons Eelec is given again by (8).

We perform a fully self-consistent calculation of the energy in a WS cell
of fixed radius Rc under the constraints of given average density ρB and charge
neutrality. Taking functional derivatives in (9) with respect to the neutron, proton
and electron densities, one finds a set of coupled integral equations for these
densities together with the β equilibrium condition µe = mn + mp + µn − µp
(see [12] for more details).

By solving such a system one finds the composition (A,Z) of minimal en-
ergy corresponding to the prescribed ρB and Rc satisfying β-equilibrium. Next,
a search of the optimal size of the cell is performed by repeating the calculation
for different values of the radius Rc with the same average density ρB . This
calculation is very delicate from the numerical point of view. The reason is that
the minimal energy as a function of Rc is usually extremely flat and the differ-
ences of the total energies involved are of the order of a fraction of few keV and
sometimes only of some eV. The self-consistent TF calculation described here
can be extended to WS cells with planar (slabs) and cylindrical (rods), and also
allows to compute spherical and cylindrical bubbles. These calculations with
non-spherical symmetry are simplified if one considers slabs or rods of infinite
extension in the perpendicular direction to Rc. Although in the cases of non-
spherical geometries the total number of particles and the energy are infinite, the
number of particle and the energy per unit of surface (slabs) or per unit of length
are finite. At densities close to the transition to the core, the differences of en-
ergies computed in WS cells with different geometries is usually very small and
a careful numerical analysis must be performed to determine the configuration
with minimal energy. For example at a density ρB = 0.077 fm−3, the optimal
configuration corresponds to a WS cell with cylindrical symmetry which differ
from the spherical solution by only 527 eV.

Once the energy is computed, the pressure in the inner crust WS cell can
be obtained by taking the derivative of the energy with respect to the size of
the cell [22]. The resulting pressure is: P = Pg + Pelect + Pex, which shows
that the pressure in the inner crust is due to the sum of the contributions of the
neutron gas and free electrons plus a corrective term coming from the electron
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is computed, the pressure in the inner crust WS cell can be obtained by taking
the derivative of the energy with respect to the size of the cell [22]. The result-
ing pressure is:P = Pg + Pelect + Pex, which shows that the pressure in the
inner crust is due to the sum of the contributions of the neutron gas and free
electrons plus a corrective term coming from the electron exchange. In Figure
3 we compare the BCPM EOS in the inner crust with the predictions of the LS
and Shen models. We see that the pressures computed with BCPMshow some
differences with the values predicted by the LS and Shen calculations. From
the same Figure we can also see that in the BCPM EOS the spherical structure
practically dominates the whole inner crust. Only at high densities close to the
transition density to the core, pasta phases are the most favourable configuration
because these phases provide the highest pressure.

4 The liquid core and the mass radius relationship

The liquid core a of NS consists of a uniform mixture of neutron, protons and
leptons (e−, µ−) in beta equilibrium. Therefore the energy density in this region
can be written as

E(ρn, ρp, ρe, ρµ) = (ρnmn + ρpmp) + (ρn + ρp)
E

A
(ρn, ρp)

+ ρµmµ +
1

2mµ

(3π2ρµ)5/3

5π2
+

(3π2ρe)
4/3

4π2
(12)

Figure 3. EOS corresponding to the inner crust of a Neutron Star computed with differ-
ent models. The inset corresponds to the BCPM EDF pressure obtained with different
geometries.

9

Figure 3. EOS corresponding to the inner crust of a Neutron Star computed with differ-
ent models. The inset corresponds to the BCPM EDF pressure obtained with different
geometries.

exchange. In Figure 3 we compare the BCPM EOS in the inner crust with the
predictions of the LS and Shen models. We see that the pressures computed
with BCPM show some differences with the values predicted by the LS and
Shen calculations. From the same Figure we can also see that in the BCPM EOS
the spherical structure practically dominates the whole inner crust. Only at high
densities close to the transition density to the core, pasta phases are the most
favourable configuration because these phases provide the highest pressure.

4 The Liquid Core and the Mass Radius Relationship

The liquid core a of NS consists of a uniform mixture of neutron, protons and
leptons (e−, µ−) in beta equilibrium. Therefore the energy density in this region
can be written as

E(ρn, ρp, ρe, ρµ) = (ρnmn + ρpmp) + (ρn + ρp)
E

A
(ρn, ρp)

+ ρµmµ +
~2

2mµ

(3π2ρµ)5/3

5π2
+

~(3π2ρe)
4/3

4π2
, (12)

where we have considered ultrarelativistic electrons and relativistic muons. The
energy per particle in asymmetric nuclear matter is well estimated by a quadratic
interpolation in terms of the asymmetry β between the EOS of symmetric and
neutron matter as we have discussed in Section 1. The chemical potential of the
different species is computed straightforwardly as µi = ∂ε/∂ρi(i = n, p, e, µ).
The beta equilibrium condition µi = biµn − qiµe (where bi and qi denote
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where we have considered ultrarelativistic electrons and relativistic muons. The
energy per particle in asymmetric nuclear matter is well estimated by a quadratic
interpolation in terms of the asymmetryβ between the EOS of symmetric and
neutron matter as we have discussed in Section 1. The chemical potential of the
different species is computed straightforwardly asµi = ∂ε/∂ρi(i = n, p, e, µ).
The beta equilibrium conditionµi = biµn − qiµe (wherebi and qi denote
the baryon number and the charge of the speciesi) and the charge neutrality∑

i ρiqi = 0 allow to determine the equilibrium compositionρi(ρ) at given
baryon densityρ. Finally the EOS of the core reads:

P (ρ) = ρ2 d

dρ

E(ρi(ρ))

ρ
= ρ

dE
dρ

− E = ρµn − E (13)

The BCPM EOS is displayed in Figure 4 from the outer crust to the core up to a
densityρ=1 fm−3 together with the predictions of the LS (label Ska), Shen and
Douchin-Haensel (label SLy) EOS. We notice a remarkable similarity between
the BCPM EOS and the one of Douchin-Haensel based on the Skyrme force
SLy4 and a strong difference with the LS and Shen EOS which arestiffer than
the BCPM EOS.

Once the full EOS from the outer crust to the core is known, therelation
between the mass and radius of a NS can be obtained using the well known
Tolman-Oppenheimer-Volkov equation (see [12] for details). The mass-radius
relationships computed with the BCPM, LS and Shen EOSs are displayed in
Figure 5. The mass of the NS as a function of the radius has a maximum value
above which the star is unstable against collapse to a black hole. The EOS
displayed in Figure 5 are compatible with the largest mass observed up to now

Figure 4. EOS corresponding to beta-stable matter computedwith different models.
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the baryon number and the charge of the species i) and the charge neutrality∑
i ρiqi = 0 allow to determine the equilibrium composition ρi(ρ) at given

baryon density ρ. Finally the EOS of the core reads:

P (ρ) = ρ2 d

dρ

E(ρi(ρ))

ρ
= ρ

dE
dρ
− E = ρµn − E (13)

The BCPM EOS is displayed in Figure 4 from the outer crust to the core
up to a density ρ=1 fm−3 together with the predictions of the LS (label Ska),
Shen and Douchin-Haensel (label SLy) EOS. We notice a remarkable similarity
between the BCPM EOS and the one of Douchin-Haensel based on the Skyrme
force SLy4 and a strong difference with the LS and Shen EOS which are stiffer
than the BCPM EOS.

Once the full EOS from the outer crust to the core is known, the relation
between the mass and radius of a NS can be obtained using the well known
Tolman-Oppenheimer-Volkov equation (see [12] for details). The mass-radius
relationships computed with the BCPM, LS and Shen EOSs are displayed in
Figure 5. The mass of the NS as a function of the radius has a maximum value
above which the star is unstable against collapse to a black hole. The EOS
displayed in Figure 5 are compatible with the largest mass observed up to now
which is 2.01M�±0.04 [23]. From Figure 5 one can also see the influence of the
crust in the mass-radius relationship. In addition to the full BCPM calculation,
we also display the mass-radius relationship computed with the BCPM EOS in
the core but using for the crust the EOS provided by Shen (squares) and LS
(circles). The effect of the EOS of the crust on the size of the star is relevant
for NS masses smaller than 1.2-1.3 solar masses pointing out the importance of
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which is2.01M⊙±0.04 [23]. From Figure 5 one can also see the influence of the
crust in the mass-radius relationship. In addition to the full BCPM calculation,
we also display the mass-radius relationship computed withthe BCPM EOS in
the core but using for the crust the EOS provided by Shen (squares) and LS
(circles). The effect of the EOS of the crust on the size of thestar is relevant
for NS masses smaller than 1.2-1.3 solar masses pointing outthe importance of
using an EOS derived from same theoretical scheme to investigate the structure
of the NS.

5 Conclusions

In the first part of this work we have revised the energy density functional BCPM
based on a fit to realistic EOS in symmetric and neutron matter, and applied to
finite nuclei through LDA. This functional contains essentially two free param-
eters to be adjusted from finite nuclei data. Due to its local character, calcula-
tions of finite nuclei are very fast. The quality of binding energies and charge
radii predicted by the BCPM energy density functional are comparable to those
computed with modern versions of Gogny and Skyrme forces. The deforma-
tion properties of nuclei obtained using the BCPM energy density functional are
similar to those predicted by the D1S Gogny force.

In the second part of the work we have studied the structure ofthe neutron
stars from the outer crust to the core using the BCPM energy density functional.
This is an attempt to describe the whole structure of NS usinga model based on
microscopic grounds. The composition and EOS of the outer crust is obtained
from masses computed with the HFB method. The EOS in the innercrust is
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Figure 5. Neutron Star gravitational mass as a function of the radius (see the text for
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using an EOS derived from same theoretical scheme to investigate the structure
of the NS.

5 Conclusions

In the first part of this work we have revised the energy density functional BCPM
based on a fit to realistic EOS in symmetric and neutron matter, and applied to
finite nuclei through LDA. This functional contains essentially two free param-
eters to be adjusted from finite nuclei data. Due to its local character, calcula-
tions of finite nuclei are very fast. The quality of binding energies and charge
radii predicted by the BCPM energy density functional are comparable to those
computed with modern versions of Gogny and Skyrme forces. The deforma-
tion properties of nuclei obtained using the BCPM energy density functional are
similar to those predicted by the D1S Gogny force.

In the second part of the work we have studied the structure of the neutron
stars from the outer crust to the core using the BCPM energy density functional.
This is an attempt to describe the whole structure of NS using a model based on
microscopic grounds. The composition and EOS of the outer crust is obtained
from masses computed with the HFB method. The EOS in the inner crust is
obtained by means of a self-consistent Thomas-Fermi approximation which also
allows to investigate pasta phases.The structure of the neutron stars predicted by
the BCPM energy density functional has been compared with the results pro-
vided by other more phenomenological EOS. The analysis of the mass-radius
relationship in NS shows that the EOS in the crust has sizeable effects on the
radius of the star pointing out the importance of using models based on the same
physical framework for both crust and core.
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[2] J. Dechargé and D. Gogny, Phys. Rev. C 21 (1996) 1568.
[3] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 (1986) 1.
[4] M. Baldo, P. Schuck and X. Viñas, Phys. Lett. B 663 (2008) 390.
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