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Abstract. A microscopic approach to calculate the optical potential (OP) with
the real part obtained by a folding procedure and with the imaginary part inher-
ent in the high-energy approximation (HEA) is applied to study the 10,11Be+p
and 10,11Be+12C elastic scattering at energies of tens of MeV/nucleon, in addi-
tion to our previous studies of 6He+p, 8He+p, 6He+12C, and 11Li+p scattering.
The OPs and the cross sections are calculated using the Generator Coordinate
Method (GCM) for the neutron and proton densities of 10,11Be and the Quantum
Monte Carlo (QMC) method for the latter of 10Be. The depths of both compo-
nents of the OP are determined from the comparison of the calculations with the
available experimental data on the elastic scattering differential cross sections
and taking into account the known behavior of the volume integrals as functions
of the incident energy. The present approach, in which the only parameters are
the depths of OPs, can be applied to calculations of more complex processes,
such as diffraction breakup and stripping reactions.

1 Introduction

Proton elastic scattering is one of the simplest hadronic reactions and has been
used to study various aspects of nuclei. Recently, the proton elastic scattering
studies are applied for light neutron-rich nuclei. A major goal of the studies is
to determine matter distributions, more specifically neutron distributions, in the
neutron-rich nuclei and to argue existence of halo and/or skin structures.

Usually, it is accepted that the 11Be nucleus consists of a core of 10Be and
a halo formed by a motion of a neutron in its periphery (e.g., Refs. [1–3]). The
latter model is justified by the small separation energy Sn = 504 ± 6 KeV [4]
of a neutron from the ground s1/2 state of 11Be and on the observed quite large
total interaction cross sections of 11Be scattering on target nuclei with a main
contribution from the breakup of 11Be on 10Be and a neutron. In addition, recent
measurements of the charge radii of 7,9,10,11Be revealed that the average distance
between the halo neutrons and the dense core of the 11Be nucleus is 7 fm [5] (see
Figure 1). Thus, the halo neutron is about three times as far from the dense core
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Figure 1. The ”halo” nucleus 11Be consists of a core of 10Be and loosely bound neutron.
Illustration: Dirk Tiedemann.

Fig. 1). Thus, the halo neutron is about three times as far from the dense core as
is the outermost proton because the core itself has a radius of only 2.5 fm. The
important role of a periphery is confirmed also by the experiments on scattering
of 11Be on the heavy nucleus of 208Pb [6], where the prevailing mechanism
is the direct breakup caused by the long-ranged Coulomb force of the nucleus.
Also we should mention the important observation of the narrow peak in the
momentum distribution of the 10Be fragments at the breakup of 11Be scattering
on the 12C nucleus [7], that is as mentioned above, a consequence of the large
extension of the wave function of the relative motion in the (10Be+n) system
related to the small neutron separation energy.

The main aim of our work is to study the elastic scattering of the neutron-
rich exotic 10Be and 11Be nuclei on protons and nuclei at energies E < 100
MeV/nucleon using microscopically calculated real and imaginary parts of the
optical potentials. Very often the elastic scattering cross sections of 10,11Be have
been calculated using phenomenological OPs of given forms with numerous fit-
ting parameters of their real and imaginary parts (e.g., Ref. [8]). Generally, much
more advantages for such studies have the microscopical analyzes, such as that
using the coordinate-space g-matrix folding method (e.g., Ref. [9]), as well as
the work (e.g., Ref. [10]), where the real part of the OP (ReOP) is calculated mi-
croscopically using effective nucleon-nucleon (NN) interactions within a folding
approach [11–14] and including also the exchange terms in it. In various works
(e.g., Ref. [15]) the volume imaginary part of the OP (ImOP) has been taken
phenomenologically either in a Woods-Saxon (WS) form or in the form of the
direct folded ReOP.

In the present paper we continue our studies of the scattering of light exotic
nuclei, such as 6He [16, 17], 8He [18], and 11Li [19] using microscopic OPs
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Figure 1. The “halo” nucleus 11Be consists of a core of 10Be and loosely bound neutron.
Illustration: Dirk Tiedemann.

as is the outermost proton because the core itself has a radius of only 2.5 fm. The
important role of a periphery is confirmed also by the experiments on scattering
of 11Be on the heavy nucleus of 208Pb [6], where the prevailing mechanism
is the direct breakup caused by the long-ranged Coulomb force of the nucleus.
Also we should mention the important observation of the narrow peak in the
momentum distribution of the 10Be fragments at the breakup of 11Be scattering
on the 12C nucleus [7], that is as mentioned above, a consequence of the large
extension of the wave function of the relative motion in the (10Be+n) system
related to the small neutron separation energy.

The main aim of our work is to study the elastic scattering of the neutron-
rich exotic 10Be and 11Be nuclei on protons and nuclei at energies E < 100
MeV/nucleon using microscopically calculated real and imaginary parts of the
optical potentials. Very often the elastic scattering cross sections of 10,11Be have
been calculated using phenomenological OPs of given forms with numerous fit-
ting parameters of their real and imaginary parts (e.g., Ref. [8]). Generally, much
more advantages for such studies have the microscopical analyzes, such as that
using the coordinate-space g-matrix folding method (e.g., Ref. [9]), as well as
the work (e.g., Ref. [10]), where the real part of the OP (ReOP) is calculated mi-
croscopically using effective nucleon-nucleon (NN) interactions within a folding
approach [11–14] and including also the exchange terms in it. In various works
(e.g., Ref. [15]) the volume imaginary part of the OP (ImOP) has been taken
phenomenologically either in a Woods-Saxon (WS) form or in the form of the
direct folded ReOP.

In the present paper we continue our studies of the scattering of light exotic
nuclei, such as 6He [16, 17], 8He [18], and 11Li [19] using microscopic OPs
within the hybrid model [20]. In the latter the ReOP is calculated by a folding
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of a nuclear density and the effective NN potentials [13, 21]. The ImOP is
obtained within the HEA [22,23]. There are only two or three fitting parameters
in the hybrid model that are related to the depths of the ReOP, ImOP and the
spin-orbit (SO) contribution to the OP. In the present work devoted to processes
with 10,11Be nuclei we use the density distribution for 10Be obtained within the
QMC [24] and also the densities of 10Be and 11Be obtained within the GCM
[25].

2 Theoretical Scheme

In the present work we calculate the microscopic OP that contains a real part
(V F ), an imaginary part (W ) and the spin-orbit interaction (V LS and WSO).
This OP is used for the calculations of the differential cross sections of the elastic
scattering of the considered nuclei on protons or nuclear targets. We introduce
a set of weighting coefficients NR, NI , NSO

R and NSO
I that are related to the

depths of the corresponding components of the OP and are obtained by a fitting
procedure to the available experimental data. Details of the constructing of the
OP are given in Refs. [11–13, 21] (see also [16–19]). The OP has the form:

U(r) =NRV
F (r) + iNIW (r)

− 2λ2
π

[
NSO
R V SOR

1

r

dfR(r)

dr
+ iNSO

I WSO
I

1

r

dfI(r)

dr

]
(l · s), (1)

where 2λ2
π = 4 fm2. Let us denote the values of the ReOP and ImOP at r = 0

by VR(≡ V F (r = 0)) and WI(≡ W (r = 0)). Then the parameters V SOR and
WSO
I in the spin-orbit part of the OP in Eq. (1) are related to VR and WI by

the V SOR = VR/4 and WSO
I = WI/4, correspondingly. We note that VR and

WI (and V SOR and WSO
I ) have to be negative. The ReOP V F (r) is a sum of

isoscalar (V FIS) and isovector (V FIV ) components and each of them has its direct
(V DIS and V DIV ) and exchanged (V EXIS and V EXIV ) parts.

The isoscalar component has the form:

V FIS(r) =V DIS(r) + V EXIS (r) =

∫
d3rpd

3rt{ρp(rp)ρt(rt)vDNN (s)

+ ρp(rp, rp + s)ρt(rt, rt − s)vEXNN (s) exp[ıK(r)s/M ]}, (2)

where s = r+rt−rp is the vector between two nucleons, one of which belongs
to the projectile and another one to the target nucleus.

In the first term of the right-hand side of Eq. (2) the densities of the incident
particle ρp and the target nucleus ρt are sums of the proton and neutron densities.
In the second term ρp and ρt are the corresponding one-body density matrices.
In our work we use for them the approximations for the knock-on exchange
term of the folded potential from Refs. [26, 27] (see also [16, 18]). In Eq. (2)
K(r) is the local momentum of the nucleus-nucleus relative motion and vDNN
and vEXNN are the direct and exchange effective NN potentials. They contain an
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energy dependence usually taken in the form g(E) = 1− 0.003E and a density
dependence in the form for the CDM3Y6 effective Paris potential [13]:

F (ρ) = C
[
1 + αe−βρ(r) − γρ(r)

]
(3)

withC = 0.2658, α = 3.8033, β = 1.4099 fm3, and γ = 4.0 fm3. The effective
NN interactions vDNN and vEXNN have their isoscalar and isovector components in
the form of M3Y interaction obtained within g-matrix calculations using the
Paris NN potential [12, 13] (see also [16]). The isovector components V FIV of
the ReOP can be obtained by exchanging in Eq. (2) the sum of the proton and
neutron densities in ρp(t) by their difference and using the isovector parts of the
effective NN interaction. In the case of the proton scattering on nuclei Eq. (2)
contains only the density of the target nucleus.

The ImOP can be chosen either to be with the form of the microscopically
calculated V F (W = V F ) or in the form WH obtained in Ref. [28] within the
HEA of the scattering theory [22, 23]:

WH(r) = − 1

2π2

E

k
σ̄N

∫ ∞

0

j0(kr)ρp(q)ρt(q)fN (q)q2dq. (4)

In Eq. (4) ρ(q) are the corresponding formfactors of the nuclear densities, fN (q)
is the amplitude of the NN scattering and σ̄N is the averaged over the isospin
of the nucleus total NN scattering cross section that depends on the energy. The
parametrization of the latter dependence can be seen, e.g., in Ref. [16]. We note
that to obtain the HEA OP (with its imaginary part WH in Eq.( 4)) one can have
in mind the definition of the eikonal phase as an integral of the nucleon-nucleus
potential over the trajectory of the straight-line propagation and has to compare
it with the corresponding Glauber expression for the phase in the optical limit
approximation. In the suggested scheme we use the known from other sources
nuclear densities and NN cross sections and also the well known and already
used NN potentials and amplitudes. In this way, the only free parameters in
our approach are the depths (W ’s) of the OPs components. In the spin-orbit
parts of the OP (the third term in the right-hand side of Eq. (1)) the functions
fi(r) (i = R, I), according to the code DWUCK4 for solving the Schrödinger
equation (that we use for the calculations of the cross sections) must correspond
to WS forms of the potentials with parameters of the real and imaginary parts
VR, WI , Ri, ai [fR(r,RR, aR) and fI(r,RI , aI)]. We determine the values
of the parameters by fitting the WS potentials to the microscopically calculated
potentials V F (r) and W (r).

3 Results of Calculations and Discussion

In the calculations of the microscopic OPs for the scattering of 10,11Be on pro-
tons and nuclei we used realistic density distributions of 10Be calculated within
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the Quantum Monte Carlo Method [24] and of 10Be and of 11Be from the Gen-
erator Coordinate Method [25]. It can be seen from Fig. 2 that they have been
calculated with enough accuracy up to distances much larger than the nuclear
radius. In both methods the densities of 10Be are quite similar up to r ∼ 3.5 fm
and the difference between both of them can be seen in their asymptotics. In the
calculations of the OPs for 10,11Be+12C the density was taken in symmetrized
Fermy type [29].
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Figure 2. Point-proton (normalized to Z = 4) and point-neutron (normalized to N = 6
and N = 7, respectively) densities of 10Be and 11Be obtained in the GCM and in the
QMC method.

On the basis of the scheme presented in Section 2 we calculated and com-
pared with the data the elastic scattering cross sections of 10,11Be+p at energies
38.4A MeV, 39.1A MeV [30] and 49.3A MeV and 59.4A MeV [8]. The results
are given in Figs. 3 and 4. Our analysis pointed out that more successful results
are obtained in the case when the ImOP is taken from HEA: W (r) = WH(r)
[Eq.(4)]. We note that in the fitting procedure of the theoretical results to the data
for the elastic scattering cross sections for 10,11Be+p (and also for 10,11Be+12C)
there arises an ambiguity in the choice of the optimal curve among many of
them that are close to the experimental data. Due to this we impose a physical
constraint, namely to choose those ReOP and ImOP that give volume integrals
which have a correct dependence on the energy. The volume integrals have the
forms:

JV (E) = − 4π

ApAt

∫
drr2[NRV F (r)], (5)

JW (E) = − 4π

ApAt

∫
drr2[NIW (r)], (6)

where Ap and At are the mass numbers of the projectile and the target, respec-
tively.

It is known [31] that the volume integrals (their absolute values) for the
ReOP have to decrease with the increase of the energy, while for the ImOP to
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Figure 3. 10Be+p elastic scattering cross sections. Upper panel: without SO term; bottom
panel: with SO term. Solid lines: calculations with GCM density of 10Be; dashed lines:
calculations with QMC density of 10Be. Experimental data for 39.1 MeV/nucleon and
59.4 MeV/nucleon are taken from Refs. [30] and [8], respectively.

increase. The values of the N ’s parameters from the fitting procedure and after
imposing the mentioned constraint are given in Table 1. It can be seen from the
Table that the tendency (the decrease of JV and the increase of JW ) is gener-
ally confirmed. The comparison of the upper and the bottom panels of Fig. 3
shows that the inclusion of the SO component of the OP gives a better agree-
ment with the data of the calculations using the GCM density at energies 39.1A
MeV and 59.4A MeV for angles less than 40◦ and 50◦, correspondingly. There
is a discrepancy at larger angles. At the same time for the cross sections with
the account for the SO interaction and using the QMC density at energy 59.4A
MeV there is only a small discrepancy with the data at small scattering angles.

In general, the account for the spin-orbit term in the volume OP gives a trend
of an increase of the cross sections at larger angles, that seems to be related
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ReOP have to decrease with the increase of the energy, while for the ImOP to
increase. The values of the N ’s parameters from the fitting procedure and after
imposing the mentioned constraint are given in Table 1. It can be seen from the
Table that the tendency (the decrease of JV and the increase of JW ) is gener-
ally confirmed. The comparison of the upper and the bottom panels of Figure 3
shows that the inclusion of the SO component of the OP gives a better agreement
with the data of the calculations using the GCM density at energies 39.1A MeV
and 59.4A MeV for angles less than 40◦ and 50◦, correspondingly. There is a
discrepancy at larger angles. At the same time for the cross sections with the
account for the SO interaction and using the QMC density at energy 59.4A MeV
there is only a small discrepancy with the data at small scattering angles.

100



Microscopic Analysis of 10,11Be Elastic Scattering on Protons and Nuclei

Table 1. The renormalization parameters NR, NI , NSO
R and NSO

I , the total reaction
cross sections σR (in mb), and the volume integrals JV and JW (in MeV.fm3) as func-
tions of the energy E (in MeV/nucleon) for the 10,11Be+p elastic scattering

Nucleus Model E NR NI NSO
R NSO

I σR JV JW

10Be GCM 39.1 0.983 0.267 292.12 389.408 116.600
without SO QMC 1.153 0.295 311.36 411.344 130.806
interaction GCM 59.4 1.001 0.802 341.18 333.739 263.540

QMC 1.188 0.856 356.98 354.606 283.464

10Be GCM 39.1 1.493 0.492 1.000 0.476 372.50 591.440 216.480
with SO QMC 1.163 0.318 0.557 0.000 323.96 414.911 141.004

interaction GCM 59.4 1.294 0.804 0.190 0.000 355.29 431.427 264.197
QMC 1.014 0.527 0.940 0.000 287.68 302.669 174.516

11Be GCM 38.4 0.824 0.659 459.05 339.388 293.493
49.3 0.793 0.805 423.52 296.301 301.184

In general, the account for the spin-orbit term in the volume OP gives a trend
of an increase of the cross sections at larger angles, that seems to be related
with the change of the form of the total OP at its periphery. If we evaluate the
quantities of the two densities of 10Be on the basis of the values of the parameter
NR (comparing which ones are closer to unity), our conclusion is that in the
calculations without SO interaction the GCM density works better, while in the
case with SO term in OP the QMC density gives better results.

In Figure 4 are given and compared with the empirical data elastic cross
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Figure 4. 11Be+p elastic scattering cross sections. Calculations are performed with GCM
density of 11Be. Experimental data for 38.4 MeV/nucleon and 49.3 MeV/nucleon are
taken from Refs. [30] and [8], respectively.
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lines: W = V F . Left panel: calculations with GCM density of 10Be; right panel:
calculations with QMC density of 10Be. Experimental data for 39.1 MeV/nucleon and
59.4 MeV/nucleon are taken from Refs. [30] and [8], respectively.

or QMC densities are used, one can see that in the case of GCM densities the
values of the parameters are closer to unity. In this way, we may conclude that as
in the 10Be+p case without SO term of OP, the GCM density can be considered
as a more realistic one.
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density of 11Be. Experimental data for 38.4 MeV/nucleon and 49.3 MeV/nucleon are
taken from Refs. [30] and [8], respectively.
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Figure 5. 10Be+12C elastic scattering cross sections. Solid lines: W = WH ; dashed
lines: W = V F . Left panel: calculations with GCM density of 10Be; right panel:
calculations with QMC density of 10Be. Experimental data for 39.1 MeV/nucleon and
59.4 MeV/nucleon are taken from Refs. [30] and [8], respectively.

sections for the scattering of 11Be on protons using the fitting procedure for the
parameters N ’s. All of them are calculated using GCM density of 11Be. One
can see a discrepancy at small angles (θ < 30◦) that seems to be related to the

Table 2. The renormalization parametersNR andNI , the total reaction cross sections σR
(in mb), and the volume integrals JV and JW (in MeV.fm3) as functions of the energy E
(in MeV/nucleon) for the 10,11Be+12C elastic scattering

Nucleus Model E W NR NI σR JV JW

10Be GCM 39.1 WH 0.939 0.708 104.539 255.156 283.037
V F 0.816 0.465 105.958 221.733 126.355

59.4 WH 1.013 1.010 101.052 238.122 302.581
V F 0.884 0.577 102.635 207.798 135.633

10Be QMC 39.1 WH 0.888 0.620 105.332 245.613 249.769
V F 0.782 0.434 106.878 216.294 120.041

59.4 WH 0.970 0.887 101.616 231.953 267.782
V F 0.849 0.534 103.035 203.019 127.694

11Be GCM 38.4 WH 0.769 0.711 127.123 216.879 287.235
V F 0.708 0.521 126.825 199.676 146.937

49.3 WH 0.820 0.883 124.406 213.754 300.193
V F 0.743 0.574 123.302 193.682 149.628

102



Microscopic Analysis of 10,11Be Elastic Scattering on Protons and NucleiMicroscopic Analysis of 10,11Be Elastic Scattering on Protons and Nuclei

1

10

10-2

10-1

11Be + 12C

E=38.4A MeV

W=WH

W=VF

1

10-2

10-1

 0  5  10  15  20

dσ
/d

σ R

θc.m. [deg]

GCM

E=49.3A MeV

W=WH

W=VF

Figure 6. 11Be+12C elastic scattering cross sections. Solid lines: W = W H ; dashed
lines: W = V F . For 11Be GCM density was used. Experimental data for 38.4
MeV/nucleon and 49.3 MeV/nucleon are taken from Refs. [30] and [8], respectively.

Table 2. The renormalization parameters NR and NI , the total reaction cross sections σR

(in mb), and the volume integrals JV and JW (in MeV.fm3) as functions of the energy E
(in MeV/nucleon) for the 10,11Be+12C elastic scattering

Nucleus Model E W NR NI σR JV JW

10Be GCM 39.1 W H 0.939 0.708 104.539 255.156 283.037
V F 0.816 0.465 105.958 221.733 126.355

59.4 W H 1.013 1.010 101.052 238.122 302.581
V F 0.884 0.577 102.635 207.798 135.633

10Be QMC 39.1 W H 0.888 0.620 105.332 245.613 249.769
V F 0.782 0.434 106.878 216.294 120.041

59.4 W H 0.970 0.887 101.616 231.953 267.782
V F 0.849 0.534 103.035 203.019 127.694

11Be GCM 38.4 W H 0.769 0.711 127.123 216.879 287.235
V F 0.708 0.521 126.825 199.676 146.937

49.3 W H 0.820 0.883 124.406 213.754 300.193
V F 0.743 0.574 123.302 193.682 149.628

9

Figure 6. 11Be+12C elastic scattering cross sections. Solid lines: W = WH ; dashed
lines: W = V F . For 11Be GCM density was used. Experimental data for 38.4
MeV/nucleon and 49.3 MeV/nucleon are taken from Refs. [30] and [8], respectively.

fact that in the calculations the coupling of the elastic channel with that when
the weakly bound neutron is separated is not accounted for. In Table 1 are given
the corresponding values of the parameters NR and NI whose values admit a
deviation from unity of about 20–30% that pointed out the successful use of the
hybrid model for OP in such calculations.

The calculated within the hybrid model elastic scattering cross sections of
10,11Be+12C (their ratios to the Rutherford one) are given in Figures 5 and 6 and
compared with the experimental data. In comparison with the case of 10,11Be+p,
the experimental data [8, 30] for the scattering on 12C demonstrate more devel-
oped diffractional picture on the basis of the stronger influence of the Coulomb
field. It can be seen in Figure 5 that in both cases of the calculations of OPs
with the QMC or GCM densities the results are in a good agreement with the
available data. It is seen also from the figures that it is difficult to determine the
advantage of the use for the ImOP, W = WH or W = V F , because the differ-
ences between the theoretical results start at angles for which the experimental
data are not available. The values of the parameters NR and NI (the depths of
ReOP and ImOP) are given in Table 2. From the comparison of these values
when GCM or QMC densities are used, one can see that in the case of GCM
densities the values of the parameters are closer to unity. In this way, we may
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conclude that as in the 10Be+p case without SO term of OP, the GCM density
can be considered as a more realistic one.

4 Conclusions

The hybrid model is applied to study characteristics of the processes of scattering
of 10Be and 11Be on protons and nuclei. In the model the ReOP is calculated
microscopically in a folding procedures of the densities of the projectile and the
target with effective NN interactions related to the g-matrix obtained on the basis
of the Paris NN potential. The ImOP is calculated microscopically within the
high-energy approximation. The only free parameters in the hybrid model (N ’s)
are the coefficients that correct the depths of the real, imaginary, and spin-orbit
parts of the OP that are obtained by a fitting procedure to the experimental data
whenever they exist. The density distribution of 10Be obtained microscopically
within GCM and QMC models and of 11Be from GCM are used.

In this work, the elastic scattering cross sections of 10Be and 11Be on pro-
tons and 12C are calculated using the microscopical OPs for energies E < 100
MeV/nucleon and are compared with the existing experimental data. In order to
resolve the ambiguities of the magnitudes of the depths of the OPs the well estab-
lished energy dependence of the respective volume integrals of the OP’s is taken
into account. The theoretical approach gives a good explanation of a wide range
of empirical data on the 10,11Be+p and 10,11Be+12C elastic scattering. It was
established that the obtained by fitting procedure values of the coefficients NR
are close to unity. We conclude that, in general, the hybrid model for microscop-
ical calculations of the OPs gives the basic important features of the scattering
cross sections and can be recommended and applied to calculate more complex
processes such as breakup reactions, momentum distributions of fragments and
others.
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