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Abstract. We have extended the light Majorana neutrino mass formalism for
the neutrinoless double beta decay by including effects of the p1/2-waves of
emitted electrons and nucleon recoil. Within a standard approximation the de-
cay rate is factorized as a sum of products of kinematical phase space factors
and nuclear matrix elements. By using exact Dirac wave function with finite
nuclear size and electron screening numerical computation of phase space inte-
grals was performed. The obtained results allow to conclude that the effect of
the p-wave and nucleon recoil is small, but not negligible. A more precise con-
clusion requires a calculation of corresponding nuclear matrix elements within
an appropriate nuclear structure method.

1 Introduction

Neutrinoless double-beta decay (0νββ-decay), which involves the emission of
two electrons and no neutrinos,

(A,Z)→ (A,Z + 2) + 2e−. (1)

is expected to occur as the total lepton number is not an exact symmetry of
nature. The 0νββ-decay is the most powerful tool to clarify whether the neutrino
is a Dirac particle (i.e., different from its antiparticle) or a Majorana particle (i.e.,
identical to its own antiparticle) as the only one of all fermions [1].

The 0νββ-decay has not yet been confirmed. The presently best lower bound
on the 0νββ-decay half-life have been achieved by GERDA (T 0ν

1/2(76Ge) ≥
3.0×1025 yrs) [2], EXO and KamLAND-ZEN experiments (T 0ν−exp

1/2 (136Xe) ≥
3.4 × 1025 yrs) [3]. The ultimate goal of experiments on the search for 0νββ-
decay is the measurement of the effective Majorana neutrino mass,

mββ = U2
e1m1 + U2

e2m2 + U2
e3m3. (2)

Here, Uei and mi (i=1,2,3) are elements of Pontecorvo-Maki-Nakagawa-Sakata
neutrino mixing matrix and masses of neutrinos, respectively. The search for
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the 0νββ-decay represents the new frontiers of neutrino physics, allowing in
principle to fix the neutrino mass scale, the neutrino nature and possible CP
violation effects.

The inverse value of the 0νββ-decay half-life for a given isotope (A,Z) is
commonly written as [1]

[
T 0νββ

1/2

]−1

= G0ν(Q,Z)g4
A

∣∣M0ν
∣∣2 |mββ |2

m2
e

. (3)

Here,G0ν(Q,Z), gA andM0ν stand for the known phase-space factor, the axial-
vector coupling constant and the nuclear matrix element of the process, respec-
tively.

The goal of this paper is to derive more accurate expression for the 0νββ-
decay rate by considering also emission of the p-wave electrons and the nucleon
recoil. To our knowledge, their impact on the calculation of the 0νββ-decay
half-life has not been studied yet.

2 Decay Rate for the Neutrinoless Double-Beta Decay

2.1 The hadronic currents in the non-relativistic approximation

We shall consider the 0νββ-decay, assuming that the weak β-decay Hamiltonian
has the standard form,

Hβ =
Gβ√

2

[
(ēγρ(1− γ5)νe) J

ρ† + h.c.
]
. (4)

Here, Gβ = GF cos θC , where GF and θC are Fermi constant and Cabbibo
angle, respectively. νe is the Majorana neutrino field, Jρ is the standard hadronic
current in the V-A theory:

〈p(P ′n)| Jµ† |n(Pn)〉 = ūp(P
′
n)
[
gV γ

µ + igM
σµν

2mN
(P ′n − Pn)ν

− gAγµγ5 − gpγ5(P ′n − Pn)µ
]
un(P ′n), (5)

where the up(P ′n) and un(Pn) are the spinors describing the proton and neu-
tron with corresponding four-momenta P ′µn = (E′n,p

′
n) and Pµn = (En,pn),

respectively. mN is the nucleon mass, q = P ′n − Pn is the momentum trans-
fer and qV ≡ qV (q2), qM ≡ qM (q2), qA ≡ qA(q2) and qP ≡ qP (q2) are the
vector, weak-magnetism, axial-vector and induced pseudoscalar form-factors,
respectively.

Within the non-relativistic impulse approximation, the hadronic current for
the nuclear β decay can be written as (See [4, 5])
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Jρ(x) =
∑

n

τ+
n δ(x− rn)

{
(gV − gACn)gρ0

+
(
gAσ

k
n − gVDk

n − gP (pkn − p
′k
n )
~σn · (pn − p

′
n)

2mN

)
gρk
}
, (6)

where ~σn is the Pauli matrix, τ+
n is the isospin raising operator and rn is the

position operator. All these operators act on the n-th neutron. The nucleon
recoil operators Cn and Dn are defined as

Cn =
~σ · (pn + p

′
n)

2mN
− gP
gA

(En − E
′
n)
~σ · (pn − p

′
n)

2mN
, (7)

Dn =
(pn + p

′
n)

2mN
− i
(

1 +
gM
gV

)~σ × (pn − p
′
n)

2mN
. (8)

2.2 Distorted electron wave function

In the 0νββ decay, the emitted electrons are attracted by the Coulomb force of
a final nucleus. This interaction is substantial in the case of single- and double-
beta decays of medium and heavy nuclei with large Z. The electron wave func-
tions are distorted in the presence of the Coulomb field enhancing the overlap of
wave functions of electrons and nucleus.

We approximate electron wave function with a sum of s1/2 and p1/2 waves
in the partial wave expansion. Then, we have (For details see [4].),

ψ(r, p, s) ' ψs1/2(r, p, s) + ψp1/2(r, p, s)

=

(
g−1(ε, r)χs

f1(ε, r)(~σ · p̂)χs

)
+

(
ig1(ε, r)(~σ · r̂)(~σ · p̂)χs
−if−1(ε, r)(~σ · r̂)χs

)
. (9)

Given the atomic potentials, g±1(ε, r) and f±1(ε, r), are solutions of the radial
Dirac equations.

2.3 S-Matrix and Half-Life for the 0νββ-Decay

The 0νββ-decay is a process of second order in the perturbation theory of weak
interactions. The matrix element of this process takes the form:

〈f |S(2) |i〉 =
(−i)2

2

(Gβ√
2

)2 1

(2π)3
√

4ε1ε2

×
∑

i

U2
ei

∫
dxdy

∫
d4q

(2π)4
e−iq(x−y) 〈Af |T [Jρ†(x)Jσ†(y)] |AI〉

× ψ̄(p1,x)eiε1x
0

γρ(1−γ5)
i(/q +mi)

q2 −m2
i

C(1−γ5)γTσ ψ̄
T (p2,y)eiε2y

0

− (ε1 ↔ ε2). (10)
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By neglecting the neutrino masses mi and replacing the electron energies
with half of the energy release in the process (ε1 ≈ ε2 ≈ (Mi −Mf )/2, where
Mi and Mf are masses of the initial and final nuclei, respectively) in the energy
denominators for T -matrix, we find

〈f |T (2) |i〉 =

C
R

2

∫
dxdy

∫
dq

2π2|q|e
iq(x−y)

∑
n 〈Af | Jρ(x) |n〉 〈n| Jσ(y) |Ai〉
|q|+ En − (Mf +Mi)/2

× [ψ̄(p1,x)γρ(1−γ5)γσψ
c(p2,y)+ψ̄(p1,y)γσ(1−γ5)γρψ

c(p2,x)]. (11)

Here, C = −G
2
β

2
1√

4ε1ε2

2
4πR

1
(2π)3mββ and |n〉 is the n-th state of the intermedi-

ate nucleus.
We go beyond the standard approach by considering the electron wave func-

tion ψ(p, r) (see Eq.(9)), which includes in addition to the s1/2-wave also the
p1/2-wave of emitted electrons. Contributions of higher partial waves like p3/2,
d3/2, . . . waves to the 0νββ decay rate are assumed to be negligible. The nuclear
current Jρ(x) is considered within the approximation given by Eq. (6). Then,
the 0νββ-decay rate can be written as

Γ0ν =
1

2

G4
βm

5
e

16π5

|mββ |2
R2

(
|M1|2G11 + |M2|2G22 + |M3|2G33

+ 2Re{M1M
∗
2 }G12 + 2Re{M1M

∗
3 }G13 + 2Re{M2M

∗
3 }G23

)
. (12)

A factorization of phase-space factors Gij and nuclear matrix elements was
achieved by the approximation in which electron wave functions g±1(ε, r) and
f±1(ε, r) are replaced by their values at the nuclear radius R. Nuclear matrix el-
ements Mn (n = 1, 2, 3) are given in the next subsection (2.4) and phase-space
integrals are given by

Gij =
1

m5
e

∫ Mi−Mf−me

me

√
(Mi −Mf − ε1)2 −m2

e(Mi −Mf − ε1)

× ε1

√
ε2

1 −m2
e gij(ε1,Mi −Mf − ε1)dε1, (13)

where factors gij(ε1, ε2) are expressed in the Appendix as a superposition of
different products of radial wave functions of electron evaluated at the nuclear
radius r = R . We note that if the contribution of the p1/2 wave of electrons
to the 0νββ-decay rate is neglected one ends up with Eq. (3). The relation
between G(0)

0ν introduced in (3) and the phase-factor G11 in Eq. (13) is G(0)
0ν =

G4
βm

7
e

32π5R2 ln 2
G11.
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2.4 Nuclear matrix elements

Nuclear matrix elements entering the 0νββ-decay rate (Eq. 12) are derived by
assuming the closure approximation for intermediate nuclear states. Within this
approximation the energies of intermediate states relative to the initial ground
state (En−(Ei+Ef )/2) are replaced by an average value Ēn−(Ei+Ef )/2 ∼
10 MeV, and the sum over intermediate states is taken by closure,

∑
n |n〉〈n| = 1.

The nuclear matrix elements are given by

M1 = MF +MGT +MT

M2 = M ′F +M ′GT +M ′T +MV +MAP +MAA , (14)

where

MF,GT,T =
∑

r,s

〈0|hF,GT,T (r−)OF,GT ,T |0〉

M ′F,GT,T =
∑

r,s

〈0|hF,GT,T (r−)OF,GT ,T
(

1− |r−|
2

2R2

)
|0〉

MV = i
∑

r,s

〈0| {hAV (r−) + hV P (r−)} (r− × r+)

R2
· ~σr |0〉

MAA =
∑

r,s

〈0|hAA(r−)τ+
r τ

+
s (~σr × ~σs) ·

r− × r+

R2
|0〉

MAP =
∑

r,s

〈0| hAP (r−)

R2
τ+
r τ

+
s (~σr · r−)(~σs · r+) |0〉 ,

(15)

and the nucleon recoil matrix element can be written as

M3 =
∑

r,s

〈0|hR(r−) (OT − 2OGT ) |0〉 . (16)

The neutrino potentials take the form

hF (r) =
2R

π

∫
dq g2

V (q2)
qj0(qr)

q + ∆

hGT (r) =
2R

π

∫
dq
(
− g2

A(q2) +
gA(q2)gP (q2)

mN

q2

3
− g2

P (q2)

4m2
N

q4

3

)qj0(qr)

q + ∆

hT (r) =
2R

π

∫
dq
(
− gA(q2)gP (q2)

mN

q2

3
+
g2
P (q2)

4m2
N

q4

3

)qj2(qr)

q + ∆

hAV (r) =− 2R

π

∫
dq 2gA(q2)gV (q2)

qj0(qr)

q + ∆

hV P (r) =
2R

π

∫
dq

gV (q2)gP (q2)

mN

q3

3

(j0(qr) + j2(qr))

q + ∆

hAA(r) =
2R

π

∫
dq g2

A(q2)
qj0(qr)

q + ∆
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hAP (r) = −2R

π

∫
dq

gA(q2)gP (q2)

mN

q3

3

(2j0(qr) + 3j2(qr))

q + ∆

hR(r) = − 2

3π

∫
dq

gA(q2)gV (q2) + gM (q2)gA(q2)

2mN

q2rj1(qr)

q + ∆
.

Here, r+ = (rr+rs)/2, r− = (rr−rs), where rr,s is the coordinate of decaying
nucleon. ∆ = Ēn − (Ei + Ef )/2 and ji(qr) (i=1,2,3) are the spherical Bessel
functions. The double Fermi, double Gamow–Teller and tensor operators are
given by

OF = τ+
r τ

+
s

OGT = τ+
r τ

+
s (~σr · ~σs)

OT = 3τ+
r τ

+
s (~σr · r̂−)(~σs · r̂−)− τ+

r τ
+
s (~σr · ~σs) .

(17)

It was assumed that pr + p′r ' 0, Er − E′r ' 0 and pr − p′r ' q, where q is
the exchange momentum of neutrino. The form factors gV (q2), gA(q2), gM (q2)
and gV (q2) are defined in [6].

2.5 Values of the phase space integrals

The phase space factors Gij (ij = 11, 12, 13, 22, 23, 33) (see Eq. (13)) were
numerically calculated for 76

32Ge, 82
34Se, 130

52Te and 136
54Xe. In the calculation we

have used exact Dirac wave functions with finite nuclear size and screening.
The homogeneous electric charge distribution inside a nucleus was assumed.
The results of this calculation are shown in the Table 1. We see clearly that
the values of Gij increase with Z of a nucleus. From the phase space factors
associated with the p1/2 wave of electrons the largest one is G13. Its origin is
an interference of the emission of the s1/2 and p1/2 electrons due to the nucleon
recoil.

Table 1. Phase space factorsGij obtained using screened exact finite-size Coulomb wave
functions of electron in the s1/2 and p1/2 states.

Gij
76
32Ge 82

34Se 130
52Te 136

54Xe

G11 1467. 6634. 12634. 13352.
G22 0.22 1.50 12.62 15.35
G12 -18.28 -99.73 -399.0 -452.3
G33 73.34 400.4 1599.58 1813.
G13 - 328.0 - 1629. -4494.62 -4919.
G23 4.09 24.52 142.07 166.8
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3 Conclusion

In this paper, we have reported about the derivation of an improved expression
for the 0νββ-decay rate, which accounts for effects of the p1/2-waves of emit-
ted electrons and of the nucleon recoil. In order to estimate their impact on the
0νββ-decay half-life the phase space factor were numerically evaluated. For
that purpose wave functions of an electron in the s1/2 and p1/2 states were ex-
actly calculated at the nuclear radius. It was found that these effects can play
an important role, if the nuclear matrix element associated with nucleon recoil
is not significantly suppressed in comparison with the dominant nuclear matrix
elements. The evaluation of nuclear matrix elements within given nuclear struc-
ture method is outside of the scope of this contribution.

Appendix: The gij Factors of Phase Space Integrals Gij

The explicit form of gij factors, expressed with the electron wave functions g±1

and f±1 evaluated at the nuclear surface, are given by

g11 =
(
f2

1 (ε1) + g2
−1(ε1)

) (
f2

1 (ε2) + g2
−1(ε2)

)

g22 =
(
f2
−1(ε1) + g2

1(ε1)
) (
f2
−1(ε2) + g2

1(ε2)
)

g12 = (f−1(ε1)g−1(ε1)− f1(ε1)g1(ε1)) (f1(ε2)g1(ε2)− f−1(ε2)g−1(ε2))

g33 =
(
f2
−1(ε2) + g2

1(ε2)
) (
f2

1 (ε1) + g2
−1(ε1)

)

+
(
f2
−1(ε1) + g2

1(ε1)
) (
f2

1 (ε2) + g2
−1(ε2)

)
− 2g12

g13 = (f−1(ε2)g−1(ε2)− f1(ε2)g1(ε2))
(
f2

1 (ε1) + g2
−1(ε1)

)

+ (f−1(ε1)g−1(ε1)− f1(ε1)g1(ε1))
(
f2

1 (ε2) + g2
−1(ε2)

)

g23 = (f1(ε2)g1(ε2)− f−1(ε2)g−1(ε2))
(
f2
−1(ε1) + g2

1(ε1)
)

+ (f1(ε1)g1(ε1)− f−1(ε1)g−1(ε1))
(
f2
−1(ε2) + g2

1(ε2)
)
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[1] J.D. Vergados, H. Ejiri, and F. Šimkovic, Rep. Prog. Phys. 71 (2012) 106301.
[2] GERDA Collaboration, M. Agostini et al., Phys. Rev. Lett. 111 (2013) 122503.
[3] KamLAND-Zen Collaboration, A. Gando et al., Phys. Rev. Lett. 110 (2013) 062502.
[4] M. Doi, T. Kotani and E. Takasugi Phys. Rev. D 37 (1988) 2575.
[5] T. Ericson and W. Weise, “Pions and Nuclei” (Clarendon Press, Oxford, 1988).
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