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Abstract. We explore the algebraic realization of the Pairing-plus-Quadrupole
Model /PQM/ in the framework of the Elliott’s SU(3) Model with the aim to ob-
tain the complementary and competing features of the two interactions through
the relation between the pairing and the SU(3) bases. First, we establish a cor-
respondence between the SO(8) pairing basis and the Elliott’s SU(3) basis. It is
derived from their complementarity to the same LS-coupling chain of the shell-
model number-conserving algebra. The probability distribution of the SU(3)
basis states within the SO(8) pairing states is also obtained and allows the inves-
tigation of the interplay between the pairing and quadrupole interactions in the
Hamiltonian of the PQM. Some particular examples based on this SO(8)-SU(3)
basis correspondence are applied for the build-up of a more elaborated micro-
scopic model that can be used in more realistic cases, which take into account
the interactions between two shells and between a shell plus an orbital.

1 Introduction

The most important short- and long-range residual interactions in the nuclear
structure physics are considered to be the pairing [1] and the quadrupole–quadru-
pole interactions [2] that have to be taken into account in the shell-model de-
scription of the nuclear systems [3]. This is the main assumption in the for-
mulation of the Pairing-plus-Quadrupole Model /PQM/ [4–6] for the descrip-
tion of the nuclear excitation spectra. The basis employed in this case is the
one of the deformed shell model, but the applications to real nuclear systems
are rather complicated and cumbersome, due to the enormous dimensionality of
the model space in particular for the heavy nuclei. Being with different range
of action on the nucleons in the valence shells it is quite clear that these in-
teractions actually influence the behavior of the systems in different parts of the
shells. In such a case the problem is simplified by employing a group-theoretical
approach [7], which introduces symmetry principles, useful in particular when
identifying dynamical symmetries [8], which represent exactly solvable limit-
ing cases of the model Hamiltonian. The PQM is particularly convenient for
this purpose, since its basic interactions – the pairing and quadrupole are in-
variants of two respective algebras, which reduce the general symmetry of the
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shell model in a dynamical way. At the same time, it has been shown in [9]
that the two so defined dynamical symmetry chains, are both complementary to
the Wigner’s spin-isospin SUST (4) symmetry, which establishes the direct con-
nection between these two limiting cases. The latter allows for the investigation
of the competing and complementarity features of the pairing and quadrupole
interactions in the description of the realistic nuclear systems in the lower shells
up to mass numbers A ∼ 100.

Another advantage of this approach is that it is rather general and works in
any of the nuclear shells and also in only part of the shells, like a single orbital,
which allows us to investigate how the model works not only in a single shell,
but in two shells or in a shell plus a single orbital. Such an extension of the PQM
will allow the consideration of a richer model space and the role of the intruder
levels in the heavier shells. The aim of this work is to start with the investigation
of these new features of the extended algebraic version of PQM and to prove its
advantages in some simple applications to real nuclear systems.

2 Algebraic Structure of the Many-Particle Shell Model

{1m} U(4Ω)
↓

{f̃} [U(Ω) ⊗ UST (4)] {f}
↓ ↘ α ↓

[µ̃] [SO(Ω) [SU(3) ⊗ SUST (4)] {f ′}
(ν[p]) ⇔ SO(8) (λ, µ) ∼ SO(6) [P ]
β ↓ ↙ K ↓
L [SOL(3) ⊗ SUS(2)]⊗ SUT (2) S, T

↓ ↓
J SUJ(2) ⊗ SUT (2) T

(1)

We start with a short explanation and analysis of the reduction scheme (1)
which gives the reduction of the algebraic realization of the shell-model algebra

U(4Ω) ⊃ U(Ω)⊗ UST (4)

into the spatial U(Ω) and spin-isospin UST (4) branches which are complemen-
tary [7]. The chain at the right-hand side of it:

SUST (4) ⊃ SUS(2)⊗ SUT (2)

of the Wigner’s supermultiplet model [10] gives the spin S and isospin T of the
basis states of the shell model. In parallel to it, on the left-hand side we show
the two possible reductions of the spatial part U(Ω) to the SO(3) algebra of the
angular momentum. The middle chain [2]

U(Ω) ⊃ SU(3) ⊃ SOL(3)
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defines the rotational limit of the model with only quadrupole-quadrupole inter-
action taken into account. The one on the left – through SO(Ω) whose represen-
tations are equivalent to the SO(8)-ones which is the algebra of the isoscalar and
isovector pairing interaction, defines the pairing limit of the shell-model algebra.
Both these chains are complementary to the spin-isospin UST (4) algebra. So,
the important result, established in [9] is that the spatial subalgebra U(Ω) of the
shell-model algebra U(4Ω) contains two distinct dynamical symmetries defined
by the reduction chains: through SO(Ω) and through SU(3). Consequently,
both chains determine full-basis sets and could be expressed through each other.
The basis states labeled by the quantum numbers of the representations of the
algebras in the SU(3) chain

|ΨR〉 ≡ |{f}α(λ, µ)KL,S; JM〉

are eigenstates of the rotational limit of the model with quadrupole-quadrupole
interaction. Correspondingly, the basis states in which the pairing interaction is
diagonal [11] are labeled as:

|ΨP 〉 ≡ |{f}ν[p1, p2, p3]βL, S; JM〉.

In both types of states α, β and K give the multiplicity labels of the corre-
sponding reductions. Since the microscopic SU(3) model based on the three-
dimensional harmonic oscillator has a well-developed theory, including the
Wigner-Racah algebra for the calculation of matrix elements [12] in the SU(3)
basis and various successful applications in real nuclei, we choose to expand the
states of the pairing basis |ΨP 〉 in the set of basis states |ΨR〉, i.e.

|ΨP 〉i =
∑

j

Cij |ΨR〉j . (2)

Using the above expansion and the diagonalization procedure for the pairing
interaction in the SU(3) basis:

i〈ΨP |HPair|ΨP 〉i =
EPair(m, i, [P ], (ST )) =

∑
jk C

∗
kiCij .δkj .k〈ΨR|HPair|ΨR〉j (3)

we obtain numerically the probability |Cij |2 with which the states of the SU(3)
basis enter into the expansion of the pairing basis. In this way we actually calcu-
late the transformation brackets between the two chains [13], which is of great
use when calculating the matrix elements of different operators in each of the
chains. This is important for example for the calculation of transition probabil-
ities. Also, this expansion could help evaluate the importance (weight) of the
different SU(3) states, when we need to impose restrictions on the basis because
of computational difficulties. The known relations of the SU(3) labels (λ, µ) and
the β, γ shape variables of the geometrical model can be used for the analysis of
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Figure 1. SU(3) contents of the lowest pairing eigenstate for the system of 2 (left) and 4
(right) identical partilces in the f7/2 orbital (Ω = 8).

different SU(3) states, when we need to impose restrictions on the basis because
of computational difficulties. The known relations of the SU(3) labels (λ, µ) and
the β, γ shape variables of the geometrical model can be used for the analysis of
the deformations of the pairing states, expressed through the respective SU(3)
ones.

The classification of the states of 2 particles in the p shell (Ω = 3), ds
shell (Ω = 6) and fp shell (Ω = 10) according to the reduction scheme (1)
is presented in Table 1 (the more complicated case for 4 particles has already
been illustrated in [9]). It is clear that for each pairing eigenstate only part of the
SU(3) representations are involved. Specifically, the lowest pairing eigenstate of
seniority ν = 0 is composed of the SU(3) irreps (2, 0) in the p shell, (4, 0) and
(0, 2) in the ds shell, and (6, 0) and (2, 2) in the fp shell.

Next, we present the results for the pairing eigenstates of systems in a single
orbital, namely, the f7/2 orbital. Energetically, this orbital lies above the orbitals
from the ds shell yet still well below the rest of the other orbitals which compose
the fp shell. This is the reason 28 to be considered as ”magic” number in some
shell-model applications. Since we use the expansion (2), from the comparison
of the results for 2 and 4 identical particles in the f7/2 orbital (Ω = 8), one can
see that more SU(3) irreps are involved in the second case, but their contributions
diminish (see the right-hand side of Fig. 1). Compared to the pairing-in-a-
shell eigenstates, we no longer have the restriction of only part of the SU(3)
representations to participate in the pairing-in-an-orbital eigenstate which is also
illustrated in the figure.

For the purpose of our investigation we use the Hamiltonian:

H = H0 + Vres (4)

of the PQM [14], where H0 = ~ω is the harmonic oscillator term or the single-
particle interactions, which we need to introduce when considering the shell
plus orbital or the two-shell cases in order to place correctly the single-particle
configurations in respect to each other. This introduces one more parameter in
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The classification of the states of 2 particles in the p shell (Ω = 3), ds
shell (Ω = 6) and fp shell (Ω = 10) according to the reduction scheme (1)
is presented in Table 1 (the more complicated case for 4 particles has already
been illustrated in [9]). It is clear that for each pairing eigenstate only part of the
SU(3) representations are involved. Specifically, the lowest pairing eigenstate of
seniority ν = 0 is composed of the SU(3) irreps (2, 0) in the p shell, (4, 0) and
(0, 2) in the ds shell, and (6, 0) and (2, 2) in the fp shell.

Next, we present the results for the pairing eigenstates of systems in a single
orbital, namely, the f7/2 orbital. Energetically, this orbital lies above the orbitals
from the ds shell yet still well below the rest of the other orbitals which compose
the fp shell. This is the reason 28 to be considered as “magic” number in some
shell-model applications. Since we use the expansion (2), from the comparison
of the results for 2 and 4 identical particles in the f7/2 orbital (Ω = 8), one can
see that more SU(3) irreps are involved in the second case, but their contributions
diminish (see the right-hand side of Figure 1). Compared to the pairing-in-a-
shell eigenstates, we no longer have the restriction of only part of the SU(3)
representations to participate in the pairing-in-an-orbital eigenstate which is also
illustrated in the figure.

For the purpose of our investigation we use the Hamiltonian:

H = H0 + Vres (4)

of the PQM [14], where H0 = ~ω is the harmonic oscillator term or the single-
particle interactions, which we need to introduce when considering the shell
plus orbital or the two-shell cases in order to place correctly the single-particle
configurations in respect to each other. This introduces one more parameter in
this generalization of the model, which influences the applications to real nuclear
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systems, where it will be used. The residual interaction is used in the form:

Vres =
1

2
(1− x)G(S†µ.Sµ + P †µ.Pµ)− 1

2
(1 + x)χQ.Q, (5)

where obviosly at x = −1 we have pure pairing interaction with equal strengths
of the isoscalar and isovector terms and at x = 1 the limiting case of pure
quadrupole interaction is realized. At x = 0 we have both interactions mixed
with their respective strengths. This allows us to investigate the influence of
these residual interactions on the spectra in real nuclear systems.

3 Results and Discussion

After presenting in short the algebraic realization of the dynamical symmetries
that appear in the microscopic shell model we would now like to exploit their
applications in realistic nuclear systems. We start with a real test case for the
applications of the theory – the ds shell, which is the first one, where both de-
formation and pairing phenomena play an important role [15], [16]. Our proof-
of-case example presents the simple but complete system of 4 particles in the
ds shell which allows us to study the PQM without any truncation of the model
space. In the same truncation-free environment we are also able to describe the
effect on the results, of adding the next fp shell or just its lowest-lying f7/2

orbital.

3.1 Results in one shell

On the upper side of Figure 2 we present the results of a minimization procedure

for the RMS value σ =
√∑

i (EiTh − EiExp)
2
/d ( per degree of freedom d )

with respect to the two parameters G and χ of the residual interaction (5) taken
for two different choices of the model space: a single ds shell (top row, left-
hand side) and ds + fp shell with ~ω = 2 MeV (top row, right-hand side).
The black areas in the middle of these figures present the intervals of change
of the parameters for which we have the minimal values of σ or the values of
the parameters fitted to a set of experimental energies EiExp from the observed
spectra of a real nuclear system. In the presented case we use the energies of the
low-lying states of 20Ne, which has 2 protons and 2 neutrons in the ds valence
shell. The red dotted line connects the values of each of the parameters G and χ
at their respective limiting cases of pure pairing or pure quadrupole-quadrupole
interactions. This line could be assigned as the axis of change of the parameter
−1 ≤ x ≤ 1 defined in (5) and used. The regions of the optimal values for the
parameters lie on this line and their position in respect to its center could serve
as a measure of the influence of each of the terms of the residual interaction on
the energy spectra of the considered nucleus.
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Figure 2. Description of the excitation spectrum for the case of 2 protons and 2 neutrons
in: upper row left-hand side – only ds single shell and upper row right-hand side – the
ds + fp shell calculated in full SU(3) basis using the PQM plus the single-particle in-
teraction at ~ω = 2 MeV. Lower panel: comparison of the experimental and theoretical
results for the excitation spectrum of 20Ne, calculated in one and two oscillator shells.
The values of the Hamiltonian parameters of the best results are given in the figure.
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3.2 Results in two shells

Next, for the same system, we extend our investigation beyond one oscillator
shell. This way, we can demonstrate how the description of the energy spectrum
improves and to what degree the two-shell eigenfunction can be described by its
one-shell restriction. The addition of f7/2 or the whole fp shell to the model
space is expected to improve the one-shell results.

The addition of the single-particle term to the Hamiltonian accounts for the
separation of the orbits in the two adjacent shells. At the right-hand side of the
upper row in Figure 2 we show the improvement of adding the fp shell to the
model space where the f7/2 orbital has the same energy as the rest of the orbitals
from the fp shell. It was demonstrated in [17] that the single-particle strength
~ω determines at which value of χ the dominant SU(3) irrep will change from
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(8, 0) (the leading representation with zero particles in the fp shell) to (12, 0)
(the one with four particles in the fp shell). It was also established that the
pairing interaction can only smooth down this transition without interfering at
which point it occurs. At the lower panel of Fig. 2 it is shown that in the
excitation spectrum of 20Ne the degeneracy of the second and third J = 0 and
J = 2 states is removed and these levels exactly reproduce the ordering of the
collective states of the experimental spectrum. Also, the RMS value σ shows
improvement - it is reduced from 0.83 to 0.69 MeV. Further upgrade of the result
can be achieved if the f7/2 orbital is considered as an orbit separated from the
remaining part of the fp shell.
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Figure 3. The overlap of the eigenstate, obtained in the two-shell model space
(|Ψ0〉 , |Ψ1〉), with the result in the single ds shell |ξ0〉 and ds plus the f7/2 orbital as
an intruder |ξ1〉 for the system of 2 protons and 2 neutrons in the dsfp shell at G = 0.2
MeV and varying values of the parameter χ. In the |Ψ0〉 eigenfunction, the f7/2 orbit is
considered energetically to belong to the ds shell. In the |Ψ1〉 case, f7/2 belongs to the
fp shell. Results are shown for (a) ~ω = 10 and (b) 20 MeV, respectively.

Finally, on Fig. 3 we demonstrate that the two-shell results |Ψ0〉 , |Ψ1〉 can
be quite well represented at certain interaction strengths by the eigenfunctions
in only one shell |ξ0〉 or the shell plus a single orbital configuration |ξ1〉. The
strongest overlap, almost independent of the interaction strengths, is obtained
for the case 〈Ψ1|ξ0〉, followed by the 〈Ψ0|ξ1〉, which starts to diminish at higher
values of χ. The fall down of the green curve with rising χ on the left part of
the figure can easily be explained by the appearing dominance of the (12, 0) rep-
resentation, a description which goes beyond the one-shell consideration. This
effect is missing on the right-hand side of the figure, since with the increase of
the ~ω values the change of the dominance is moved towards bigger χ values. A
similar effect can be seen with the red curve which point to structure differences
between the two-shell and the shell plus an orbital eigenstate. Finally, such an
effect is missing on the blue curve for these χ values.
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for the case 〈Ψ1|ξ0〉, followed by the 〈Ψ0|ξ1〉, which starts to diminish at higher
values of χ. The fall down of the green curve with rising χ on the left part of
the figure can easily be explained by the appearing dominance of the (12, 0) rep-
resentation, a description which goes beyond the one-shell consideration. This
effect is missing on the right-hand side of the figure, since with the increase of
the ~ω values the change of the dominance is moved towards bigger χ values. A
similar effect can be seen with the red curve which point to structure differences
between the two-shell and the shell plus an orbital eigenstate. Finally, such an
effect is missing on the blue curve for these χ values.
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4 Conclusions

On the basis of the algebraic reductions of the shell-model algebraU(4Ω) through
the dynamical symmetries defined by the pairing algebra SO(8) and Elliott’s
SU(3) algebra, we explore the relation between the two bases and elucidate the
algebraic structure of an extended Pairing-plus-Quadrupole Model, in the frame-
work of the SU(3) scheme [7]. This allows us to study the complementarity and
competitive effects of the quadrupole-quadrupole and pairing interactions on the
energy spectra of the nuclear systems.

In this paper, we extended the investigation of these effects in a single shell
to the consideration of a shell plus an orbital and two-shell cases which are
both contained in the employed algebraic approach. This leads to the use of
richer model spaces and to a generalization of the PQM that includes a single-
particle interaction, which defines the spacing between the considered shells.
Applications of the theory are used as a test of principle for a realistic nuclear
system of two protons and two neutrons in the ds shell and the ds + fp shell.
The theoretical results are compared with experimental energy spectrum of the
20Ne nucleus, from where the optimal values of the parameters of the residual
interactions G and χ are obtained. In the two-shell case this is investigated for
different values of ~ω and the best result for σ is presented. A more accurate
description of the interplay between the PQM’s interactions would require a
three-parameter fit to the experiment. Nevertheless, even in this simplified case
the obtained results are improved compared to the single-shell case, by lifting
the degeneracy in the theoretical collective levels and reproducing their ordering.

We also investigate the possibility of approximating the two-shell results
with the single shell and the single-shell plus orbital ones, which could be very
useful in studying the role of the intruder orbital in heavier shells. This inves-
tigation traces the way to the more elaborated and accurate predictions of the
collective properties of nuclei, where protons and neutrons fill the same shell,
which are of utmost importance for the nuclear astrophysics.
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