Inelastic Scattering of Protons on ⁹Be Nucleus $(J^{\pi} = 3/2^+)$ in the Framework of Glauber Theory

M. Zhusupov¹, E. Ibraeva², R. Kabatayeva¹

¹Al-Farabi Kazakh National University, Almaty, Kazakhstan ²Institute of Nuclear Physics, Almaty, Kazakhstan

In the framework of Glauber diffraction theory a calculation of differential cross section for inelastic p⁹Be-scattering has been carried out. The wave function of ⁹Be nucleus for the ground and the excited states in the three-particle $\alpha + \alpha + n$ – model was used. The expansion of the ⁹Be wave function in gaussoids series and representation of the Glauber Ω operator in a form conjugating to the three-particle wave function allow calculating analytically the matrix elements of the inelastic scattering with account of all orders of scattering and re-scattering on clusters and a nucleon of the ⁹Be nucleus.

In Figure there is a cross section of inelastic p⁹Be-scattering $(J^{\pi} = 3/2^+)$ with different model functions of the ⁹Be nucleus at $E_p = 180$ MeV. Curves 1 and 2 – are the calculation with the wave function in models 1 and 2, curve 3 – with oscillatory wave function, curve 4 and experiment are from [1].

Figure 1: The differential crosssection of p⁹Be-scattering at level $J^{\pi} = 3/2^+$. Experimental data are from [1]. Explanation is provided in the text.

The cross section with the three-particle wave function in the model 1 is closer to experiment in the forward angles range. The calculation at large angles is beyond the accuracy of the Glauber theory. For comparison we showed the result of calculation in the distorted waves approximation [1].

References

[1] S. Dixit, W. Bertozzi, T.N. Buti, et al. Phys. Rev. C. 43 (1991) 1758.

XXXIV International Workshop on Nuclear Theory