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Abstract. In the present paper the authors have calculated the differential cross
sections of inelastic scattering of protons on the excited states of 9Be nucleus
in the framework of the Glauber diffraction theory of multiple scattering. The
9Be nucleus was considered in the three-particle 2αn-model, wave functions
of which were calculated with different potentials of pair interactions. The ex-
cited states of 9Be nucleus reveal the halo-structure what defines the behavior of
the cross sections in all angle range. The calculated results are compared with
experimental data and results of other authors.

1 Introduction

The new challenge for study of the weakly-bound nuclei is the discovery of the
exotic structure (halo and skin) of the number of unstable neutron- and proton-
rich isotopes. The 9Be nucleus is a stable strongly deformed one (quadrupole
moment Q = 52.88(38) mb [1]), weakly-bound in the cluster channel 9Be →
α + α + n (ε = 1.57 MeV) [1], that is the direct indication to its three-particle
α+ α+ n structure. This nucleus can be considered as borromean one since in
the framework of the three-particle α + α + n picture in 9Be nucleus there are
not two components able to form the bound system. A consideration of this nu-
cleus in the three-particle model led to a better understanding of the halo and the
molecular structure of three-particle systems [2]. Besides the channel of three-
particle disintegration the 9Be nucleus can decay by the two-particle channels
9Be→ n+ 8Be or 9Be→ α + 5He. It is shown in [3], that the 8Be + n cluster
structure only of the 9Be nucleus explains the data on 9Be + 208Pb scattering
adequately. In the recent high precision experiment [4] on measurement of cross
section of elastic 9Be + 208Pb scattering at the sub-barrier energies it is shown
that the deviation observed in cross section from Rutherford scattering indicates
to the dominating 8Be + n cluster structure of 9Be nucleus while α + 5He struc-
ture is represented less clearly. The positive-parity states reproduce better the
8Be + n structure [5], while concerning the negative-parity states and the impor-
tance of the α + 5He structure for them there is some uncertainty. It is shown
in [6] and [7], that the dynamic evolution from the α + 5He structure at small
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distances to the n + 8Be structure at large distances describes better the levels
with quantum numbers 1/2+ and 5/2−.

The elastic and inelastic (for the level Jπ = 5/2−, E∗ = 2.44 MeV) scatter-
ing of the polarized protons at energy of 220 MeV have been earlier measured
in [8]. A calculation of the differential cross section, analyzing power and depo-
larization were carried out in the optical model, in the DWIA and in the coupled
channels method using the spherical Wood-Saxon potential. It is shown that
the simple optical model and the first approximation of the DWIA describe the
cross section and the polarizing characteristics less well than the coupled chan-
nels method.

The differential cross sections and the analyzing powers of the p9Be scatter-
ing and charge-exchange 9Be(p, n)9B reactions at E = 180 MeV to the ground
and the excited states of the 9Be nucleus were calculated in the distorted waves
approximation using the effective interaction dependent on the density and based
on the Paris potential [9]. A comparison with the experimental data showed that
with account of the quadrupole deformation of the 9Be nucleus the differential
cross sections are well reproduced for both the ground and the excited states of
negative parity in the wide range of the momentum transfer q = 0 ÷ 3 fm−1

while for the positive-parity states the situation is worse.
A study of the inelastic scattering of α-particles on 9Be nucleus and reac-

tions of one-particle transfer 9Be(α, 3He)10Be and 9Be(α, t)10B has been re-
cently carried out in Finland (Cyclotron Facility of the Accelerator Laboratory,
Jyvaskayla University) at Eα = 63 MeV. The measured differential cross sec-
tions for the ground and several low-lying (5/2−, 7/2−, 9/2−) states were ana-
lyzed in the framework of the optical model, the coupled channels method and
the DWBA [10]. In many works the special attention was given to the role of the
extra valence nucleons and their influence on the cluster structure of the excited
states. As the authors emphasize [11], “observation of halos in the excited states
can drastically extend the existing knowledge about exotic states of nuclei, since
some new features of nuclear structure might become apparent”.

The present work is the continuation of the previous ones [12–14], where
the elastic and inelastic (for the Jπ = 1/2+ level) differential cross sections
in the framework of the Glauber theory were calculated at E = 180 MeV and
220 MeV and compared to the experimental data [8, 9]. In paper [14] there
is a calculation of the mean-square radii of the ground state (2.45 fm) and the
1/2+ state (2.83 fm). In the above-mentioned excited state the 9Be nucleus
has more extended, diffuse structure in comparison with the wave function of
the ground state, and as a result it was concluded that this level is a halo state.
The goal of this work is a calculation of the differential cross section of the
inelastic scattering of protons with energy of 180 MeV to the excited 3/2+ and
5/2− states of the 9Be nucleus in the framework of the Glauber theory and a
comparison with the results obtained in other formalisms.

13



M.A. Zhusupov, E.T. Ibraeva, R.S. Kabatayeva

2 Brief Formalism

The matrix element of scattering in the Glauber theory is the following [15]:

Mif (~q) =
∑

MJ ,M ′J

ik

2π

∫
d2~ρei~q~ρδ(~RA)

〈
Ψ
J′M ′J
f |Ω|ΨJMJ

i

〉
, (1)

where ~ρ is an impact parameter, which is a two-dimensional vector in the Glauber
theory, ~RA is the coordinate of the target nucleus mass center, ΨJMJ

i ,Ψ
J′M ′J
f –

initial and final states wave functions of the target nucleus, ~k, ~k′ are incoming
and outgoing momenta of the proton, ~q is the momentum transfer in the reaction
~q = ~k − ~k′.

The wave function of the 9Be nucleus in 2αn-model [16, 17] with total an-
gular momentum J and its projection MJ is written as follows:

ΨJMJ

i,f = ϕ1(ξ1−4)ϕ2(ξ5−8)
∑

L

ΨJMJ

L (~r, ~R), (2)

where ϕ1(ξ1−4), ϕ2(ξ5−8) are the wave functions of the α-particles dependent
on the internal coordinates of the system of four nucleons, ΨJMJ

L (~r,~R) is a func-
tion of relative motion in terms of the Jacobi coordinates. The wave function
ΨJMJ

L (~r,~R) is expanded by the partial waves

ΨJMJ

L (~r, ~R) =
∑

MLMSmµ

〈LMLSMS |JMJ〉〈λµ`m|LML〉rλYλµ(Ωr)

×R`Y`m(ΩR)χSMS

∑

ij

Cλ`ij exp(−αir2 − βjR2), (3)

where 〈LMLSMS |JMJ〉, 〈λµ`m|LML〉 are the Clebsch-Gordan coefficients
determining the scheme of momenta addition, Yλµ(Ωr), Y`m(ΩR) are the spher-
ical functions, χSMS

= χ 1
2mN

ϕ1(ξ1−4)ϕ2(ξ5−8) – spin function of the valence
nucleon and the α-particle, Cλ`ij , αj , βj are the linear and nonlinear variation pa-
rameters. The weight of the three configurations of the wave function and some
static characteristics of the 9Be nucleus are represented in paper [16].

In the ground (Jπ = 3/2−) state the three components contribute with
about the same weights with quantum numbers (λ`L) = (011), (211), (212).
The excited states Jπ = 3/2− (E∗ = 4.704 MeV with weight of 99.5%) and
Jπ = 5/2− (E∗ = 2.43 MeV with weight of 97.5%) contain one dominating
component (λ`L) = (022) and (λ`L) = (212) [16], respectively.

Let’s write the matrix element (1) after substitution of the wave function (3)
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Mif (~q) =
ik

2π

∑

ML,M ′L,µ,µ
′

〈LMLSMS |JMJ〉〈L′M ′LS′M ′S |J ′M ′J〉

× 〈λµ`m|LML〉〈λ′µ′`′m′|L′M ′L〉

×
∑

iji′j′

Cλ`ij C
λ′`′
i′j′

∫
d2ρei~q~ρ

〈
rλYλµ(Ωr)R

`Y`m(ΩR)

× e(−αir
2−βjR

2) |Ω| rλ′Yλ′µ′(Ωr)R`
′
Y`′m′(ΩR)e(−α′ir2−β′jR2)

〉
. (4)

The general form of the Glauber multiple scattering operator is written as
alternating-sign series of one-, two-, ..., A-fold (where A is the number of nu-
cleons in the target nucleus) collisions of the incident proton with the nucleons
of the nucleus [15]

Ω = 1−
A∏

j=1

(1− ωj(~ρ− ~ρj))

=

A∑

j=1

ωj +
∑

j<µ

ωjωµ −
∑

j<µ<η

ωjωµωη + · · ·+ (−1)A−1ω1ω2 . . . ωA, (5)

where ωj - is a profile function dependent on the elementary fxj(q)-amplitude

ωj(~ρ− ~ρj) =
1

2πik

∫
d2~q exp[−i~q(~ρ− ~ρj)]fxN (q), (6)

where x = (n, α). The elementary amplitude is parametrized in the following
standard way:

fxN =
kσxN

4π
(i+ εxN )exp(−βxNq2/2), (7)

where σxN is the total cross section of scattering on a nucleon, εxN is the ratio of
the real part of the amplitude to the imaginary one, βxN is the slope parameter
of the amplitude cone. The parameters at different energies are provided in
paper [12].

Substituting the wave function of the 9Be nucleus in 2αn-model into the ma-
trix element, it is convenient to transform the Ω operator to a form conjugated to
this model, considering collisions not with separate nucleons, but with α-particle
clusters as structureless and the nucleon. In accordance with this approach the
series of multiple scattering (5) for the 9Be nucleus is rewritten as follows:

Ω =

3∑

j=1

ωj −
3∑

i<j=1

ωiωj + ωα1
ωα2

ωn, (8)

where j = 1, 2 enumerate α1 and α2, j = 3 enumerates the nucleon.
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After substitution of the elementary amplitude (7) into the profile function
(6) and integration with respect to ~q variable, one gets

ωj(~ρ− ~ρj) = Fjexp[−(~ρ− ~ρj)
2ηj ], (9)

where
Fj =

σxj
4πβxj

(i+ εxj), ηj =
1

2βxj
. (10)

For further calculations it is necessary to change from single-particle
{ ~ρ1, ~ρ2, ~ρ3} coordinates of nucleons in the Ω operator to the Jacobi coordinates
{~r, ~R} and the coordinate of the 9Be nucleus mass center ~R9

~r = ~ρ1 − ~ρ2, ~R =
1

2
( ~ρ1 + ~ρ2)− ~ρ3, ~R9 =

1

9
(4 ~ρ1 + 4 ~ρ2 + ~ρ3). (11)

As it was shown in works [13,14] after some transformations the Ω operator
in the Jacobi coordinates can be written as follows:

Ω = (~G ~H) =

7∑

k=1

GkHk, (12)

where the summation over k index means a summation over scattering order:
k = 1 ÷ 3 – single collisions, k = 4 ÷ 6 – double collisions, k = 7 – triple
collisions. Here ~G is a 7-dimensional vector with components

~G = (G1, G2, . . . , G7)

= (Fα, Fα, Fn,−FαFα,−FαFn,−FαFn, FαFαFn). (13)

The components of the vector ~H = (H1, H2, H3) are expressed through the
exponential function of coordinates in a form

Hk = exp(−ak ~ρ⊥2−bk ~R⊥
2−ck ~r⊥2+dk ~ρ⊥ ~R⊥+lk ~ρ⊥ ~r⊥+fk ~R⊥ ~r⊥), (14)

where

ak = (ηα, ηα, ηn, 2ηα, (ηα + ηn), (ηα + ηn), (2ηα + ηn)),

bk =
1

81
(ηα, ηα, 64ηn, 2ηα, (ηα + 64ηn), (ηα + 64ηn), (2ηα + 64ηn)),

ck =
1

2
(
ηα
2
,
ηα
2
, 0, ηα,

ηα
2
,
ηα
2
, ηα),

dcm =
2

9
(ηα, ηα, 8ηn, 2ηα, (2ηα + 8ηn), (2ηα + 8ηn), (2ηα + 8ηn)),

lcm = (−ηα, ηα, 0, 0,−ηα, ηα, 0),

f cm =
1

9
(ηα,−ηα, 0, 0, ηα,−ηα, 0),
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where coefficients ak, bk, ... are defined with the formulas (10).
Substituting the operator (12) into the formula (4), the matrix element can

be written in a form:

M
(λ`L)
if (q) =

ik

2π

7∑

k=1

∑

iji′j′

∑

LλL′λ′

GkC
λ`
ij C

λ′`′
i′j′

×
∫
H̃k(ρ⊥, r⊥, R⊥, q)Hkz (rz, Rz)Q

LSλ`
L′S′λ′`′(r

λ, R`)d2ρd~rd~R, (15)

where the following notations are introduced

QLSλ`L′S′λ′`′(r
λ, R`) =

∑

MLM ′Lµµ
′

〈LMLSMS |JMJ〉〈L′M ′LS′M ′S |J ′M ′J〉

× 〈λµ`m|LML〉〈λ′µ′`′m′|L′M ′L〉
× 〈rλYλµ(r)|rλ′Yλ′µ′(r)〉〈R`Y`m|R`

′
Y`′m′〉, (16)

H̃k(ρ⊥, r⊥, R⊥, q) = exp(−akρ2 − b̃kR2
⊥ − c̃kr2

⊥
+ dkρ⊥R⊥ + `kρ⊥r⊥ + fkR⊥r⊥ + i~q~ρ), (17)

b̃k = bk + βj + β′j , c̃k = ck + αi + α′i, (18)

Hz(rz, Rz) = exp(−(αi + α′i)r
2
z − (βj + β′j)R

2
z). (19)

In the polynomial QLSλ`L′S′λ′`′ there is a summation of the Clebsch-Gordan
coefficients with the spherical functions (regular sectorial harmonics), which in
Cartesian coordinates are represented with harmonic polynomials by x, y, z [18]

r`Y`m(Ωr) =

√
2`+ 1

4π
(`+m)!(`−m)!

×
∑

pnt

1

p!n!t!
(−x+ iy

2
)p(

x− iy
2

)nzt, (20)

where p+ n+ t = `, p− n = m, and p, n, t are integer positive numbers.
The polynomial QLSλ`L′S′λ′`′ is written as the product

QLSλ`L′S′λ′`′(r
λ, R`) =

∑

MLM ′LMSM ′S

〈LMLSMS |JMJ〉〈L′M ′LS′M ′S |J ′M ′J〉

×
∑

λµλ′µ′`m`′m′

〈λµ`m|LML〉〈λ′µ′`′m′|L′M ′L〉Kλµ(rλ)K`m(R`), (21)

where

Kλµ(rλ) = 〈rλYλµ|rλYλµ′〉, K`m(R`) = 〈R`Y`m|R`Y`m′〉.
Let’s calculate the quantities Kλµ(rλ), K`m(R`) for quantum numbers ` =

1 and λ = 2 for the level Jπ = 5/2−. The calculations for the level Jπ = 3/2+

are presented in the work [13].
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K1m(R) = 〈RY1m|RY1m′〉
= (D1)2

{
R2
x+yδm1δm′1 +R2

x−yδm−1δm′−1

+ 2Rx2+y2δm1δm′−1

}
, (22)

where D1 = 1
2

√
3

2π
, Rx+y = −(Rx + iRy), Rx−y = (Rx − iRy).

K2µ(r2) = 〈r2Y2µ|r2Y2µ′〉
= (D2)2{r̃2

xyzδµ0(r2
xyzδµ′0 + r2

x+y[δµ2 + δµ′2]

+ r2
x−y[δµ−2 + δµ′−2]) + r2

x+yδµ2δµ′2

+ r4
x−yδµ−2δµ′−2 + 2r2

x+yr
2
x−yδµ2δµ′−2}, (23)

where

D2 =
1

8

√
30

π
, rx+y = −(rx + iry),

rx−y = (rx − iry), r2
xyz = 2r2

z − r2
x − r2

y.

Further calculation of the QLSλ`L′S′λ′`′ polynomials and the M (λ`L)
if matrix el-

ement was carried out using the MAPLE program.
The differential cross section is a square of the matrix element module

dσ

dΩ
=

1

2J + 1

∑

MJM ′J

|Mif (~q)|2 . (24)

3 Wave Functions of 9Be in 2αnαnαn Model

The calculation of the wave function in 2αn model [16, 17] was carried out in
the variation stochastic method with three couple interactions Vαα, Vα1n, Vα2n.

Model 1 : Vαα is the Ali-Bodmer potential (AB) [19], shallow one with repulsive
core at small distances, not containing the forbidden states;

Model 2 : Vαα is the Buck potential (B) [20], deep attractive one with the for-
bidden states, describing scattering phases with λ = 0, 2, 4, 6; Vαn is the same
as in model 1.

In both models Vαn was used – a potential with exchange Majorana compo-
nent which leads to the even-odd splitting of the phase shifts.

Let’s move to a consideration of the geometric structure of the wave function
which allows one to visualize the relative location of clusters and understand the
manifestation of their features in the scattering process.

What is the difference between wave functions calculated with different po-
tentials? As it is shown in works [16, 17] in the ground state the wave func-
tion in the model 1 due to presence of the repulsive core inside the nucleus is

18



Inelastic Scattering of Protons on 9Be Nucleus (Jπ = 3/2+, 5/2−)

Figure 1. Three-dimensional profile of the 9Be nucleus wave function in the excited
Jπ = 3/2+ state with AB potential

close to zero (”disappear”), and it reaches the maximal value on the periphery at
r > 3 ÷ 4 fm. In the model 2 the wave function is more strongly involved into
the nucleus, and there are a node and two maximums inside. Let’s see what are
the wave functions like in the excited states?

In Figures 1 and 2 there are behaviors of three-dimensional profiles of the
wave functionsW (r,R) =

∑
λ`L |Ψλ`L|2r2R2 in the excited Jπ = 3/2+, 5/2−

states.
In Figure 1 there is a three-dimensional profile of the wave function of the

excited Jπ = 3/2+ state calculated with AB potential. One can see in the figure
that the wave function inside the nucleus equals zero (r ≤ 1.5 fm), reaches the
maximal value at (r,R) = (3.5, 3.2) fm, decreases very slowly, oscillating, and
asymptotically approaches zero at (r,R) = (10.0, 18.0) fm. If there is a large
r-coordinate extension of the wave function in the ground state [16, 17], then in
the Jπ = 3/2+ state, in opposite, the large R-coordinate extension is observed.
The minor first peak at R = 0.5 fm demonstrates the contribution of the cigar-
shaped configuration, when the neutron is about between the two α-particles:
r = 3.5 fm, R = 0.5 fm. However the contribution of this configuration is small
and there is a large probability of realization of the configurations at (r,R) =
(3.5, 3.2) fm (triangle) or (r,R) = (3.5, 10.0) fm (halo).

One can see another picture in Figure 2, where the three-dimensional pro-
file of wave function of the excited Jπ = 5/2− state is shown. With AB
potential the function inside the nucleus (r ≤ 1.0 fm) equals zero, has one
maximum at (r,R) ≈ (2.5, 5.5) fm, and asymptotically approaches zero at
(r,R) ≈ (4.0, 5.0) fm. In Buck potential the function is totally located in
the inner part of the nucleus with the maximum at (r,R) ≈ (0.7, 1.5) fm, its
asymptotic is less extended and ends at (r,R) ≈ (2.0, 4.5) fm. In both models
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Figure 2. Three-dimensional profiles of 9Be nucleus wave functions in the excited Jπ =
5/2− state with AB (left) and Buck (right) potentials

one observes the extremely compact distribution of nucleons with clusters wave
functions overlapping.

The explanation of the different behavior of the wave functions in 3/2+ and
5/2− states is in the shell structure of the 9Be nucleus. In the 3/2+ state the
valence nucleon fills the (2s − 2d) shell, and that increases the radius of the
nucleus and defines its halo-structure; in 5/2− state the nucleon remains on 1p-
shell and the radius does not increase. This agrees with the calculation of the
mean-square radii: 〈r2〉1/2 = 2.976 fm for the Jπ = 3/2+ state and 〈r2〉1/2 =
2.13 fm for the Jπ = 5/2− state.

Thus, for the excited states of the 9Be nucleus one observes the different
pictures: for the Jπ = 3/2+ state the extended neutron distribution defining
its diffuse structure, and for the Jπ = 5/2− state the compact one with cluster
overlapping in the inner part of the nucleus.

4 Results Analysis

In Figures 3 and 4 there are calculations of the differential cross section of the in-
elastic p9Be-scattering with different model wave functions of the 9Be nucleus.
The differential cross sections for the Jπ = 3/2+, 5/2− states with which au-
thors compare their calculations have been measured in an experiment carried
out at the cyclotron laboratory of Indiana University [9] at Ep = 180 MeV.

In Figure 3 (scattering for the Jπ = 3/2+ level) it is seen that the differen-
tial cross section with three-particle wave functions in the part of forward angles
(θ ≺ 40◦) coincides well with the experiment, however at angle increase the cal-
culation goes lower than the experimental data. The minimum in the differential
cross section at θ → 0◦ is caused by the orthogonality of the wave functions
of the initial and final states of the 9Be nucleus. Further the cross section in-
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Figure 3. Differential cross sections of inelastic p9Be-scattering for the Jπ = 3/2+

level with different model wave functions of the 9Be nucleus. The solid (model 2) and
dashed (model 1) curves, dash-dotted curve - with oscillatory wave function, dotted -
from paper [9].

creases rapidly until the maximum, and after it decreases monotonically as the
scattering angle increases. The contribution to the differential cross sections at
small angles depends on the behavior of the wave function at asymptotic. As the
abovementioned analysis of the profiles shows, the wave function calculated in
the model 1 has the r-coordinate extended asymptotic (extending until ∼ 9 fm)
and the much moreR-coordinate extended asymptotic (extending until∼ 18 fm)
what leads to a rapid increase of the cross section at small angles. The maximum
of the calculated differential cross section is close to the maximum of the experi-
mental one; however at θ � 40◦ it decreases more rapidly than the experimental
one where the inner part of the nucleus influences. The cross section with the
shell wave function Ψf = 1d3/2 correlates less well with the experimental data
in all angle range.

For comparison the authors show the result of differential cross section cal-
culation (dotted curve) in the distorted wave approximation with the effective
interaction dependent on the density and based on the Paris potential with the
shell wave function [9]. However this curve describes less well the experiment:
its maximum is shifted for 20◦ to the large angles and the value of the cross
section is essentially less for small angles (momentum transfer) and essentially
more for large angles.

Note that the Glauber theory has essential restrictions for energy and angle
range of the particles scattered. Since the incident particles energy is not too
large, then the results are reliable for forward scattering angles only. The calcu-
lation at large angles is beyond the Glauber theory accuracy.

In Figure 4 there is a calculation of the differential cross section for the
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Figure 4. The same as in Figure 3 for the Jπ = 5/2− level.

Jπ = 5/2− level. The calculation is carried out with two model wave functions.
As it is seen from Figure 2, the wave function in the model 1 due to the repul-
sive core in the inner part of the nucleus disappears, its maximum is located at
(r,R) = (2.5, 1.5) fm, and it decreases until zero at (r,R) = (4.5, 5.5) fm.
The wave function in the model 2 is strongly involved into the inner part of the
nucleus, its asymptotic extends until (r,R) = (2.0, 5.0) fm only. That is why at
small angles (where the main contribution is given by the asymptotic of the wave
function) the differential cross sections in the model 2 and in the oscillatory one
increase slowly and do not reach the maximum of the experimental values. In the
inner part the wave function in the model 2 is more compact (r,R) = (0.5, 1.5)
fm, and in the model 1 is more extended (r,R) = (2.5, 2.0) fm, what reflects
the behavior of the cross sections in the range of large angles (θ � 30◦). Note
that the calculation describes badly the experimental data (all curves lie higher
or lower than the experimental values). Here for comparison the authors show
the result of the differential cross section calculation (dotted curve) in the dis-
torted wave approximation from paper [9]. It is seen that the calculation of the
differential cross section for the level of the negative parity Jπ = 5/2− agrees
completely with the experiment, while the differential cross section for the level
of the positive parity (Figure 3), in opposite, differs from the experiment enough
strongly.

5 Conclusion

The authors calculated the differential cross sections of the inelastic p9Be-scattering
for the Jπ = 3/2+, 5/2− levels at proton energies of 180 MeV and compared
them with the experimental data and with the calculation in the distorted waves
method [9]. The agreement with the experimental data for the 3/2− level is in
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the range of forward θ < 400 angles, while for the 5/2− level all curves calcu-
lated go lower or higher than the experiment. The analysis of the profiles of the
wave functions in 2αn-models showed that in the excited Jπ = 3/2+, 5/2−

states the nucleus has different structures: diffuse with extended asymptotic
(with long tail) in the 3/2+ state and compact with short asymptotic in the 5/2−

state. The calculation of the mean-square radii confirms this conclusion: 2.976
fm for the Jπ = 3/2+ state and 2.13 fm for the Jπ = 5/2− state. The wave
function in the model 1 (for the 3/2+ state) inside the nucleus equals zero and
reaches the maximal value at r ≈ 3.3−3.5 fm and asymptotically decrease until
zero at r ≈ 18 fm. The wave functions in the model 1 and 2 (for the 5/2− state)
are localized in the inner part of the nucleus: the maximum of the first one is
located near the centre of the nucleus; the maximum of the second one is distant
from the centre for 2 fm. And at that the functions decrease rapidly and go for
asymptotic yet at (r,R) = (4.5, 5.0) fm.

The analysis of the wave functions allowed one to connect them with the
behavior of the cross sections and show the influence of the contribution of the
wave functions different parts on the differential cross sections. The curves cal-
culated with various interaction potentials describe the experimental data differ-
ently. The best description of the differential cross sections for the level 3/2+ at
small angles is observed in the model 2. While for the 5/2− level it is described
badly in both the models, and that shows the inadequate choice or calculation of
the wave functions for the levels of negative parity.
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