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Abstract. The sub-barrier fusion reactions, though they occur with a lower
cross section, have the advantage of a final state closer to the ground state. Con-
sequently one hopes for a longer lifetime of the nucleus. Superheavy nuclei
are stable only due to the shell and pairing corrections. The macroscopic en-
ergy produces no barrier. We calculated here the pairing corrections within a
specialized binary model, the deformed two center shell model. The pairing
corrections have been obtained by solving the BCS system, in order to obtain
the Fermi level for paired nucleons and the energy gap which appears when
protons and neutrons are under pairing interaction.

Compared to the shell correction, the pairing energy is in antiphase and smaller.
When we have paired nucleons, they have an occupation and non-occupation
probability different from 1. These probabilities depend on the energy gap and
the new Fermi level. These quantities determine the inertia tensor, which is
necessary in the dynamics of the process via the action integral.

The binary character appears in the use of the deformed two center Hamiltonian.
The deformation parameters are: the ratios of the semiaxes, the small semiaxis
of the projectile and the distance between centers.

The total penetrability is calculated within the WKB approximation and the final
transmission factor for the sub-barrier cross-section is obtained. Calculations
have been performed for superheavy nuclei. We obtained for example the most
favorable reaction 160Yb+132Sn→ 292120 (highest penetrability).

1 Introduction

In binary nuclear phenomena, like fusion and fission, the use of a two-center
model is necessary. When the total deformation energy is calculated along the
distance between centers for binary configurations, some valleys appear for dif-
ferent mass asymmetries. These valleys can be obtained as the result of multidi-
mensional minimization of the action integral within the space of deformation.
In order to take as many as possible deformation parameters into account, one
has to calculate all the terms in the total deformation energy with the appro-
priate binary model able to describe the stages of the fission or fusion process.
Such models have been developed along the years [1, 2]. The importance of the
deformed valleys in the potential energy surfaces is that they provide the most
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favored fission channels for the decay of superheavy nuclei, or synthesis paths
for the fusion process. For the dynamics study one has to introduce the influ-
ence of the mass tensor. We use the results from the pairing calculations for the
occupation probabilities. In this way the mass tensor components contain the
binary character of the process, since the pairing parameters are calculated with
the two-center shell model levels. The mass tensor components are calculated
with the cranking model, specialized for binary configurations. Finally the pene-
trabilities are calculated within the WKB approximation, and favoured synthesis
or decay channels are obtained.

2 The Deformed Binary Potential

The axial symmteric binary configurations are used for the total deformation
energy calculation. A typical shape is displayed in Figure 1, where b1, a1 and
b2, a2 are the small and large semi-axes of the daughter (target) and emitted
fragment (projectile) respectively, zs is the position of the separation plane and
R is the distance between centers. All these geometrical parameters form the
space of deformation, and further on one shall work with χd = b1/a1, χe =
b2/a2, b2 and R as degrees of freedom.

The microscopic part starts with the binary Hamiltonian written for a single
particle system:

H = − ~2

2m0
∇2 + V (ρ, z) + Vls + Vl2 , (1)

where the potentials are deformation dependent and m0 is the nucleon (proton
and neutron) mass. The same equation is valid for protons and neutrons. The
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Figure 1. Binary configuration for fusion and fission description in the axial symmetric
hypothesis
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deformed two-center oscillator potential for the two fission fragment regions
reads

VDTCSM(ρ, z) =
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(2)
In the case of fusion like configurations the neck terms Vg1 and Vg2 are miss-

ing. It is the fusion part we will treat further on. Angular momentum dependent
potentials, VΩs and VΩ2 are constructed to comply to the V (ρ, z)-dependence
and hermiticity of the operators, so that

Vso =





−
{ ~
m0ω0T

κT (ρ, z), (∇V (r) × p)s
}

, vT − region

−
{ ~
m0ω0P

κP (ρ, z), (∇V (r) × p)s
}

, vP − region
(3)

and similarly for the l2 term. The matrix diagonalization of H generates the
level scheme of the fission configuration, for spheroidally deformed nuclei, at
any given distance R between centers and intermediary independent b2, χd and
χe. The level scheme sequence from the compound nucleus up to complete sepa-
ration is input data for the Strutinsky method [3], and calculations are performed
separately for protons and neutrons.

The shell correction energy is obtained as the difference between the simple
sum of level energies and the smoothed part of the same scheme:

Esh =
∑

i

Ei − Ũ (4)

where the summation is performed for all occupied levels. The main part of
the calculation consists in obtaining the smoothed term Ũ . A smoothed level
distribution density g̃(ε) is defined by averaging the actual distribution over a
finite interval γ (here equal to 1.2 in ~ω units). If the level energies in units of
~ω are denoted with εi, one can write the integral which replaces the discrete
sum and one obtains the smoothed distribution:

g̃(ε) =
1

γ

∞∫

−∞

ζ
(ε− ε′

γ

)
g(ε′)dε′ =

1

γ

∞∑

i=1

ζ
(ε− εi

γ

)
. (5)

This work utilizes a smoothing function ζ of the form:

ζ(x) =
1√
π

exp (−x2)fm(x) , (6)
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where x = (ε − ε′)/γ and the smoothing function f is taken as a polynomial
sum:

fm(x) =

m∑

k=0

a2kH2k(x) . (7)

Hn(x) are the Hermite polynomials, and the maximum degree m (here 3) is
taken such as dŨ/dγ=constant (the plateau condition). The maximum level is
chosen such as |xi| ≥3. Beyond this limit the contribution of more remoted
levels is negligeable. Once the density of the smooth levels g̃(ε) is obtained by
this smearing procedure, the smoothed part of the energy is given by

ũ = Ũ/~ω =

λ̃∫

−∞

g̃(ε)εdε (8)

where the Fermi level λ̃ for smoothed distribution is obtained from the conser-
vation of the total number of nucleons:

Ne =

λ̃∫

−∞

g̃(ε)dε (9)

By substituting the above expression for g̃(ε) one obtains

Ne =
2√
π

∞∑

1

xiF∫

−∞

fm(x2
i ) exp (x2

i )dxi , (10)

where xiF = (λ̃− εi)/γ. The summation is in fact reduced to the levels around
the Fermi limit. The latter equation yields the Fermi level for smoothed distribu-
tion λ̃, and is solved numerically. We consider a set of doubly degenerate energy
levels {εi} expressed in units of ~ω0

0 . Calculations for neutrons are similar with
those for protons, hence for the moment we shall consider only protons. In the
absence of a pairing field, the first Z/2 levels are occupied, from a total num-
ber of nt levels available. Only few levels below (n) and above (n′) the Fermi
energy are contributing to the pairing correlations. Usually n′ = n. If g̃s is the
density of states at Fermi energy obtained from the shell correction calculation
g̃s = dZ/dε, expressed in number of levels per ~ω0

0 spacing, the level density is
half of this quantity: g̃n = g̃s/2.

We can choose as computing parameter, the cut-off energy (in units of ~ω0
0),

Ω ' 1� ∆̃. Let us take the integer part of the following expression

Ωg̃s/2 = n = n′ . (11)

When from calculation we get n > Z/2 we shall take n = Z/2 and similarly
if n′ > nt − Z/2 we consider n′ = nt − Z/2.
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The gap parameter ∆ = |G|∑k ukvk and the Fermi energy with pairing
corellations λ (both in units of ~ω0

0) are obtained as solutions of a nonlinear
system of two BCS equations

n′ − n =

kf∑

k=ki

εk − λ√
(εk − λ)2 + ∆2

, (12)

2

G
=

kf∑

k=ki

1√
(εk − λ)2 + ∆2

, (13)

where ki = Z/2− n+ 1; kf = Z/2 + n′.
The pairing interaction strength G is calculated from a continuous distribu-

tion of levels

2

G
=

λ̃+Ω∫

λ̃−Ω

g̃(ε)dε√
(ε− λ̃)2 + ∆̃2

, (14)

where λ̃ is the Fermi energy deduced from the shell correction calculations and
∆̃ is the gap parameter, obtained from a fit to experimental data, usually taken
as ∆̃ = 12/

√
A~ω0

0 . Both ∆p and ∆n decrease with increasing asymmetry
(N − Z)/A. From the above integral we get

2

G
' 2g̃(λ̃) ln

(
2Ω

∆̃

)
. (15)

Real positive solutions of BCS equations are allowed if

G

2

∑

k

1

|εk − λ|
> 1 , (16)

i.e. for a pairing force (G-parameter) large enough at a given distribution of
levels.

As a consequence of the pairing correlation, the levels situated bellow the
Fermi energy are only partially filled, while those above the Fermi energy are
partially empty; there is a given probability for each level to be occupied by a
quasiparticle

v2
k =

1

2

[
1− εk − λ√

(εk − λ)2 + ∆2

]
(17)

or a hole
u2
k = 1− v2

k . (18)

Only the levels in the near vicinity of the Fermi energy (in a range of the
order of ∆ around it) are influenced by the pairing correlations. For this rea-
son, it is sufficient for the value of the cut-off parameter to exceed a given limit
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Figure 2. Variation of the total cranking inertia with the reduced distance between centers
for the synthesis reaction 132Sn+160Yb→292120.

Ω� ∆̃, the value in itself having no significance. The shell and pairing correc-
tions calculated for the splitting of 292120 in the Sn fission channel are displayed
in Figure 2 along the reduced distance between centers. One observes large fluc-
tuations of the proton and neutron shell corrections, in counterphase with the
corresponding pairing energy. Finally the pairing correction energy is obtained
as the difference between the pairing correlation energies for the discrete level
distribution p and the one for the continuous level distribution p̃

δp = p− p̃ , (19)

where

p =

kf∑

k=ki

2v2
kεk − 2

Z/2∑

k=ki

εk −
∆2

G
(20)

and
p̃ = −(g̃∆̃2)/2 = −(g̃s∆̃2)/4 . (21)

The smooth gap parameter is ∆̃ = (12.0/A1/2), which gives a good agree-
ment with the experimental gap throughout the periodic table. One has again:
δp = δpp + δpn, and the total microscopic corrections are added: δe = δu+ δp.

The macroscopic part is obtained using the Yukawa-plus-exponential method,
specialized to binary processes. The Coulomb term EC [4] and the nuclear sur-
face term EY [5] are computed as

EC =
2π

3
(ρ2
ed
FCd

+ ρ2
eeFCe

+ 2ρedρeeFCTe
) (22)
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and

EY =
1

4πr2
0

[csdFEYd
+ cseFEYe

+ 2(csdcse)1/2FEYde
] (23)

where ρei is the charge density and csi the surface coefficient. FCi and FEYi are
shape dependent integrals.The peculiarity resides in the last term in both formu-
las, FCde

and FEYde
, which account for the interaction between non-overlapped

parts of the overlapping configuration. Details about these terms are given in [6].
The total deformation dependent macroscopic energy is calculated as the

sum of the Coulomb and surface terms

Emacro = (EC − E(0)
C ) + (EY − E(0)

Y ) , (24)

where E(0)
C and E(0)

Y are the values for the corresponding spherical compound
nucleus. Finally the deformation energy is computed as the sum of the macro-
scopic part and the shell correction and pairing energies:

Edef = Emacro + Esh + P. (25)

3 Dynamics

In order to obtain the penetrabilities for different reaction channels, the action
integral must be computed. Besides the usual deformation energy, the nuclear
inertia tensor, which accounts for the reaction of the nucleus to the deformation
along a given degree of freedom, is to be computed. This work uses the crank-
ing approach to obtain the mass tensor components within the four-dimensional
space of (be, χd, χe, R). According to the cranking model, after including the
BCS pairing correlations [7], the inertia tensor is given by [8]

Bij = 2~2
∑

νµ

〈ν|∂H/∂βi|µ〉〈µ|∂H/∂βj |ν〉
(Eν + Eµ)3

(uνvµ + uµvν)2 + Pij , (26)

where H is the two-center single-particle Hamiltonian allowing to determine
the energy levels and the wave functions |ν〉, uν , vν are the BCS occupation
probabilities,Eν is the quasiparticle energy, and Pij gives the contribution of the
occupation number variation when the deformation is changed (terms including
variation of the gap parameter, ∆, and Fermi energy, λ, ∂∆/∂βi and ∂λ/∂βi).
The binary configuration uses four independent geometric parameters, the small
semiaxis of the projectile bp, the ratio of the two semixes of the target nucleus
χT and projectile χp and the distance between centers R. Consequently there
are ten coupling components of the mass inertia tensor. In order to introduce the
tensor into the action integral, we contract the components along the distance

31



R.A. Gherghescu, D.N. Poenaru

between centers R, and we obtain:

B(R) = BbP bP

(
dbP
dR

)2

+ 2BbPχT

dbP
dR

dχT
dR

+ 2BbPχP

dbP
dR

dχP
dR

+ 2BbPR
dbP
dR

+BχTχT

(χT
dR

)2

+ 2BχTχP

dχT
dR

dχP
dR

+ 2BχTR
dχT
dR

BχPχP

(χP
dR

)2

+ 2BχPR
dχP
dR

+BRR (27)

The final quantity to be computed is the penetrability, which is obtained as
the result of the multidimensional minimization of the action integral within the
space of deformation. The penetrability P for a fusion path is given by:

P = exp(−Kov) , (28)

where the action integral is computed as

Kov(bP , κT , κP ;R) =
2

~

∫

(fus)

[2B(R)bP ,κT ,κP
Edef(R)bP ,κT ,κP

]1/2dR . (29)

4 Results

We calculated the penetrabilities for the sub-barrier fusion reactions towards the
synthesis of the superheavy nuclei 292120 and 300120. For every superheavy sys-
tem, the whole range of mass and charge asymmetry has been considered. The
minimization has been performed numerically using a multidimensional grid,
and calculating the deformation energy and the total mass inertia in every point.
Then minimization is obtained by summing every successive step along the dis-
tance between centers with all the next steps. Finally, all possible sums are
obtained, and the minimum is chosen as the value of the action integral. The
path along the cranking inertia for the fusion favoured channel 132Sn+160Yb
→292120 is presented bellow. The other promising sub-barrier fusion channel
is 132Sn+168Yb→300120. One has to mention that these reactions benefy also
from the low barrier due to the almost symmetric splitting of the binary configu-
ration, as well as for the double magicity of the 132Sn projectile, which provides
a negative shell correction energy in the deformation path.
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