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Abstract. The temperature dependence of the symmetry energy for isotopic
chains of even-even Ni (A=58–82), Sn (A=124–152), and Pb (A=202–214) nu-
clei is investigated in the framework of the local density approximation. The
Skyrme energy density functional with two Skyrme-class effective interactions,
SkM* and SLy4, is used in the calculations. The temperature-dependent densi-
ties are calculated through the HFBTHO code that solves the nuclear Skyrme-
Hartree-Fock-Bogoliubov problem by using the cylindrical transformed deformed
harmonic-oscillator basis. In addition, two other density distributions of 208Pb,
namely the Fermi-type density determined within the extended Thomas-Fermi
method and symmetrized-Fermi local density obtained within the rigorous den-
sity functional approach, are used. The results for the thermal evolution of the
symmetry energy coefficient in the interval T=0–4 MeV show that its values
decrease with temperature being larger in the case of the symmetrized-Fermi
density of 208Pb. It is observed that for all isotopic chains considered and for
both Skyrme forces used in the calculations the symmetry energy coefficient de-
creases with the increase of the mass number in the same temperature interval.

1 Introduction

The nuclear symmetry energy is a measure of the energy gain in converting
isospin asymmetric nuclear matter (ANM) to a symmetric system. Its value
depends on the density ρ and temperature T . Experimentally, the nuclear sym-
metry energy is not a directly measurable quantity and is extracted indirectly
from observables that are related to it [1]. The need of information for the
symmetry energy in finite nuclei, even theoretically obtained, is a major issue
because it allows one to constrain the bulk and surface properties of the nu-
clear energy-density functionals (EDFs) quite effectively. More information on
the nuclear symmetry energy is still required for understanding the structures of
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nuclei far away from the β-stability line, heavy-ion collisions, supernova explo-
sions, and neutron star properties. A sensitive probe of the nuclear symmetry
energy is the neutron-skin thickness of nuclei (see, for example, Ref. [2] and
references therein) although its precise measurement is difficult to be done. As
can be seen, e.g., in Refs. [3–7], an increasingly wide range of theoretical con-
clusions are being proposed on the density dependence of the symmetry energy
as well as on some associated nuclear characteristics. In the last years, the tem-
perature dependence of single-particle properties in nuclear and neutron matter
was also broadly investigated including studies in finite systems, as well (e.g.,
Refs. [8–15]).

The thermal behavior of the symmetry energy has a role in changing the
nuclear drip lines as the nuclei warm up. Also, it is of fundamental importance
for the liquid-gas phase transition of asymmetric nuclear matter, the dynamical
evolution mechanisms of massive stars and the supernova explosion [16]. Since
the density derivative of the symmetry coefficient reflects the pressure difference
on the neutrons and protons and thus it is one of the determinants in fixing the
neutron skin of nuclei, the nature and stability of phases within a warm neutron
star, its crustal composition or its thickness [17] would be strongly influenced
by the temperature dependence of the symmetry energy.

In our previous works [18] and [19] the symmetry energy has been studied
in a wide range of spherical and deformed nuclei, correspondingly, on the basis
of the Brueckner EDF of ANM [20, 21]. In these works the transition from the
properties of nuclear matter to those of finite nuclei has been made using the
coherent density fluctuation model (CDFM) [22, 23]. In [18] the study of the
correlation between the thickness of the neutron skin in finite nuclei and the nu-
clear symmetry energy (s) for the isotopic chains of even-even Ni (A=74–84), Sn
(A=124–152) and Pb (A=206–214) nuclei, also the neutron pressure (p0) and the
asymmetric compressibility (∆K) for these nuclei has been performed. The cal-
culations have been based on the deformed self-consistent mean-field HF+BCS
method using the CDFM and the Brueckner EDF. The same approaches have
been used in Ref. [19] for the calculations of the mentioned quantities of de-
formed neutron-rich even-even nuclei, such as Kr (A=82–120) and Sm (A=140-
156) isotopes. The numerical results for s, p0, and ∆K for neutron-rich and
neutron-deficient Mg isotopes with A=20–36 are presented in Ref. [24].

The main aim of this work is, apart from the ρ-dependence investigated in
our previous works [18,19,24], to study also the temperature dependence of the
symmetry energy in finite nuclei. We focus on the determination of the symme-
try energy coefficient, for which we have explored the local density approxima-
tion (LDA) [10, 25] with some modifications. In the present paper the thermal
evolution of the symmetry energy coefficient is investigated for Ni (A=58–82),
Sn (A=124–152), and Pb (A=202–214) isotopic chains in the interval T=0–4
MeV using different model temperature-dependent local density distributions
for these nuclei.
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2 Theoretical Scheme

For finite systems, different definitions of the symmetry energy coefficient are
adopted in the literature yielding different values. In our case we calculate the
symmetry energy coefficient for a specific nucleus within the LDA and it is given
as [10]

esym(A, T ) =
1

I2A

∫
ρ(r)esym[ρ(r), T ]δ2

l (r)d3r. (1)

In Eq. (1) esym[ρ(r), T ] is the symmetry energy coefficient at temperature T of
infinite matter at the value of the local density ρ(r), δl(r) = [ρn(r)−ρp(r)]/ρ(r)
is the isospin asymmetry of the local density, where ρn(r) and ρp(r) are the
neutron and proton densities, ρ(r) = ρn(r) + ρp(r) and I = (N − Z)/A. The
symmetry energy coefficient can be approximated by

esym(ρ, T ) =
e(ρ, δ, T )− e(ρ, δ = 0, T )

δ2
l

, (2)

where esym(ρ, δ, T ) is the energy per nucleon in an asymmetric infinite matter,
while e(ρ, δ = 0, T ) is that one of symmetric nuclear matter. For an infinite
system the energy per nucleon is calculated as e = ε(r)/ρ. We use for the total
energy density of the system ε(r) the Skyrme energy density functional with two
Skyrme-class effective interactions, SkM* and SLy4. It is written as
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In Eq. (3) t0, t1, t2, t3, x0, x1, x2, x3, and α are the Skyrme parameters (given
in Table II of [10] for SkM* and SLy4 interactions). The nucleon effective mass
mq,k is defined through
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with q = (n, p) referring to neutrons or protons. Here we would like to note that
for infinite homogeneous systems only the first three lines of Eq. (3) contribute
(the derivative terms are vanished) and the Coulomb term εc is neglected since
the whole system is charge neutral.

In contrast to the methodology employed in Ref. [10], where the kinetic
energy density τq(r) entering the expression for ε(r) [Eq. (3)] is considered in
the Thomas-Fermi approximation at finite temperature, we use in our theoretical
scheme τq(r) from Ref. [13]

τq(r) =
2m

~2
εKq

=
3

5
(3π2)2/3

[
ρ5/3
q +

5π2m2
q

3~4

1

(3π2)4/3
ρ1/3
q T 2

]
, (5)

which is valid at low T . The first term in square brackets is the degenerate limit at
zero temperature and the T 2 term is the finite-temperature correction. By using
the approximate expression (5) for the kinetic energy density, Lee and Mekjian
performed calculations of the volume and surface symmetry energy coefficients
for finite nuclei in Ref. [13] showing that the surface symmetry energy term
is the most sensitive to the temperature while the bulk energy term is the least
sensitive. The symmetry coefficient esym(ρ, T ) of ANM can then be computed
from Eq. (2) and that one esym(A, T ) for finite nuclei from Eq. (1).

The temperature-dependent densities are calculated through the HFBTHO
code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov (HFB) problem
by using the cylindrical transformed deformed harmonic-oscillator basis [26] by
implementing the finite temperature formalism for the HFB method. In addi-
tion, two other density distributions of 208Pb [27], namely the Fermi-type den-
sity determined within the extended Thomas-Fermi (ETF) method [28] and the
symmetrized-Fermi local density obtained within the rigorous density functional
approach (RDFA) [29], are used. The density within the ETF method [28] which
is the semi-classical limit of the temperature-dependent Hartree-Fock (THF) the-
ory [30] has the form:

ρETF (r, T ) = ρ0(T )

{
1 + exp

[
r −R(T )

α(T )

]}−γ(T )

. (6)

The temperature-dependent local density parameters ρ0,R, α and γ are obtained
for the nucleus 208Pb with the SkM* effective force. The local densities (6)
reproduce the averaged THF results up to temperature T=4 MeV [30]. The
symmetrized-Fermi local density distribution determined for the same nucleus
within the RDFA [29] is

ρSF (r, T ) = ρ0(T )
sinh[R(T )/b(T )]

cosh[R(T )/b(T )] + cosh[r/b(T )]
. (7)

The temperature-dependent local density parameters ρ0, R, and b are obtained
with the SkM effective force up to T=10 MeV. As has been demonstrated in [29],
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the RDFA almost exactly reproduces the THF results [31] up to temperatures
T=8 MeV above which the nucleus is unstable with respect to the THF calcula-
tions [31].

3 Results of Calculations and Discussion

We start our analysis by searching the role of temperature-dependent local den-
sity distributions ρ(r) on the symmetry energy coefficient esym. The results
for these densities of the nucleus 208Pb obtained within different approaches
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tions [31].

3 Results of Calculations and Discussion

We start our analysis by searching the role of temperature-dependent local den-
sity distributions ρ(r) on the symmetry energy coefficient esym. The results for
these densities of the nucleus 208Pb obtained within different approaches are
given in Figs. 1-3. In addition to the proton and neutron densities, normalized
to Z=82 and N=126, respectively, that are presented in Fig. 1, we give also in
Fig. 2 the total local density of 208Pb normalized to A=208. It can be seen from
both figures that ETF method and RDFA yield densities that have smooth behav-
ior of r at any temperature T although the RDFA, in contrast to ETF method,
incorporates the THF shell effects [27]. Figs. 1 and 2 also show that with in-
crease of the temperature the all type of densities decrease. This decrease is
stronger for the neutron and total density distributions of 208Pb. The proton and
neutron local density distributions of 208Pb obtained within the Skyrme HFB
method and illustrated in Fig. 3 have somewhat different behavior. The same
trend with the increase of the temperature can be observed, but in this case the
local densities ρ(r) exhibit a stronger T -dependence.
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Figure 1. Proton and neutron local density distributions of 208Pb obtained within the ETF
method [28] and for temperatures T=0–4 MeV.
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systems and their thermal evolution, some ambiguities about their proper defi-
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Figure 2. Proton, neutron and total local density distributions of 208Pb obtained within
the RDFA [29] and for temperatures T=0–4 MeV.
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Figure 3. Proton and neutron local density distributions of 208Pb obtained within the
Skyrme HFB method [26] with SLy4 (top panel) and SkM* (bottom panel) forces. Five
different curves for protons and neutrons represent the results for the corresponding den-
sities for temperatures T = 0–4 MeV.

are given in Figures 1-3. In addition to the proton and neutron densities, nor-
malized to Z=82 and N=126, respectively, that are presented in Figure 1, we
give also in Figure 2 the total local density of 208Pb normalized to A=208. It
can be seen from both figures that ETF method and RDFA yield densities that
have smooth behavior of r at any temperature T although the RDFA, in contrast
to ETF method, incorporates the THF shell effects [27]. Figures 1 and 2 also
show that with increase of the temperature the all type of densities decrease.
This decrease is stronger for the neutron and total density distributions of 208Pb.
The proton and neutron local density distributions of 208Pb obtained within the
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the RDFA. We would like to note that our results for esym are close to those
obtained within the LDA in Ref. [10] for the same nucleus.
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Figure 4. Comparison of the results for the symmetry energy coefficient esym for 208Pb
calculated with ETF, RDFA and HFB (with SkM* and SLy4 forces) densities.

Figures 5–7 illustrate the isotopic evolution of the symmetry energy coef-
ficient on the example of the Sn (A=124–152) and Pb (A=202–214) chains in
the case of both SLy4 and SkM* Skyrme interactions used in the calculations.
A smooth decrease of esym is observed with the increase of the mass number.
We also would like to note the lack of kink for the Pb isotopic chain shown in
Fig. 7 when looking at the values of esym at zero temperature. This is not the
case for the Ni and Sn isotopic chains (see Figs. 5 and 6), where the order of
the different curves at T=0 MeV exhibits a kink at the double-magic 78Ni and
132Sn nuclei. These results confirm our previous observations when studying the
density dependence of the symmetry energy for Ni, Sn, and Pb isotopes [18,19].

4 Conclusions

The LDA is applied to study the temperature dependence of the symmetry en-
ergy coefficient. It is calculated for the nucleus 208Pb using two types of temperature-
dependent local density distributions within ETF method and RDFA. For the
isotopic Ni, Sn, and Pb chains calculations are also performed with densities ob-
tained in the framework of Skyrme HFB method by using the cylindrical trans-
formed deformed harmonic-oscillator basis. For infinite ANM a Skyrme density
functional with SkM* and SLy4 effective forces is used.

The ETF and RDFA results for the density distributions demonstrate a smooth
function of r at any temperature T , while the Skyrme HFB densities have a
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Figure 4. Comparison of the results for the symmetry energy coefficient esym for 208Pb
calculated with ETF, RDFA and HFB (with SkM* and SLy4 forces) densities.

Skyrme HFB method and illustrated in Figure 3 have somewhat different behav-
ior. The same trend with the increase of the temperature can be observed, but in
this case the local densities ρ(r) exhibit a stronger T -dependence.

In understanding the symmetry energy coefficient esym for finite nuclear sys-
tems and their thermal evolution, some ambiguities about their proper definition
could be noted. In our work we apply the LDA, in which the symmetry energy
coefficient can be calculated by using Eq. (1). A comparison between the results
for esym for 208Pb with three different densities, namely obtained within the
ETF, RDFA and HFB methods (with SkM* and SLy4 forces), is given in Fig-
ure 4. The results for the thermal evolution of the symmetry energy coefficient
in the interval T = 0–4 MeV show that its values decrease with the temperature
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being larger in the case of symmetrized-Fermi density of 208Pb obtained within
the RDFA. We would like to note that our results for esym are close to those
obtained within the LDA in Ref. [10] for the same nucleus.

Figures 5–7 illustrate the isotopic evolution of the symmetry energy coef-
ficient on the example of the Sn (A=124–152) and Pb (A=202–214) chains in
the case of both SLy4 and SkM* Skyrme interactions used in the calculations.
A smooth decrease of esym is observed with the increase of the mass number.
We also would like to note the lack of kink for the Pb isotopic chain shown in
Figure 7 when looking at the values of esym at zero temperature. This is not the
case for the Ni and Sn isotopic chains (see Figures 5 and 6), where the order of
the different curves at T=0 MeV exhibits a kink at the double-magic 78Ni and
132Sn nuclei. These results confirm our previous observations when studying the
density dependence of the symmetry energy for Ni, Sn, and Pb isotopes [18,19].
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4 Conclusions

The LDA is applied to study the temperature dependence of the symmetry en-
ergy coefficient. It is calculated for the nucleus 208Pb using two types of tempe-
rature-dependent local density distributions within ETF method and RDFA. For
the isotopic Ni, Sn, and Pb chains calculations are also performed with densi-
ties obtained in the framework of Skyrme HFB method by using the cylindrical
transformed deformed harmonic-oscillator basis. For infinite ANM a Skyrme
density functional with SkM* and SLy4 effective forces is used.

The ETF and RDFA results for the density distributions demonstrate a smooth
function of r at any temperature T , while the Skyrme HFB densities have a
stronger T -dependence. In general, the density distributions decrease with the
temperature. The results for the thermal evolution of the symmetry energy coef-
ficient in the interval T=0–4 MeV show that its values decrease with temperature
being larger in the case of symmetrized-Fermi density of 208Pb. It is observed
that for all isotopic chains considered and for both Skyrme forces used in the
calculations the symmetry energy coefficient decreases with the increase of the
mass number in the same temperature interval.
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