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1CEA, DAM, DIF 91680 Arpajon, FRANCE
2CSNSM, IN2P3/CNRS, 91405 Orsay Campus, FRANCE

Abstract. The vibrational mass parameters entering the quadrupolar 5DCH
Hamiltonian are commonly calculated neglecting beyond mean-field correla-
tions and dynamical rearrangement of the self-consistent field [1]. The Quasi-
particle Random Phase Approximation (QRPA) framework would allow to avoid
the aforementioned approximations. However, due to prohibitive computation
time, in particular when using finite-range interactions such as Gogny ones, the
calculation of QRPA mass parameter is unrealisable. In order to reduce the
QRPA computation time valence space techniques are applied, leading to a gain
in time of a factor up to 30. The convergence properties of the calculated mass
parameters prove their robustness toward the valence space limitations. On the
contrary, the intrinsic QRPA outputs exhibit weak convergence properties, with
deceptive appearance when inserting an inert core. Therefore, for the optimiza-
tion of the valence space limits neither the excited states energy, nor the associ-
ated transition probabilities, should be considered for criteria of convergence.

1 Introduction

In the 5DCH theory the Bohr Hamiltonian is built and solved microscopically,
without any free parameter. Starting from only one ingredient – a density-
dependent force (the D1M Gogny interaction in the present work)– the low-
energy quadrupolar dynamics, involving five collective degrees of freedom, is
obtained from self-consistent mean-field solutions. The reduction of the compu-
tation time, relatively to the GCM process, obtained thanks to the GOA approx-
imation makes 5DCH a possible cornerstone for the construction of an “univer-
sal” approach describing, on the same foot and from only one nucleon-nucleon
interaction, nuclei along the whole chart. Indeed, as soon as the concept of
mean-field is meaningful (for N, Z & 10), 5DCH calculations can be undertaken
in light nuclei, as well as in the heaviest ones for which the computation time
is manageable. It is worth recalling that this approach is not limited to axial
symmetry, and implies a β,γ mapping. Yet, several drawbacks of 5DCH are
known [1, 2], giving rise to a dependence of the result reliability on the nuclear
deformation. Possible cure of 5DCH could be obtained by adding beyond mean-
field correlations to the 5DCH vibrational mass parameters [1–4]. In principle
that could be achieved in Quasiparticle Random Phase Approximation (QRPA),
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but not in practice due to the prohibitive QRPA time consumption, in particu-
lar when using a density-dependent force. On another hand, the strong varia-
tions with the deformation of the vibrational mass parameters [5, 6] impose to
compute them for a large amount of β,γ values. The time related cost is then
a key issue in the development of 5DCH cures, and our recent work, in that
respect, represents an important breakthrough. Indeed, for the first time a vibra-
tional mass parameter is obtained, in a reasonable computational time, within a
HFB+QRPA approach built on a Gogny interaction. In this work, the computing
time reduction is obtained by setting limitations on the valence space available
for the excitations entering the QRPA calculations. The technique of the cut-off
in the 2 quasi-particle (qp) energy, that imposes a limit in the upper single level
involved in 2qp excitation, has already been validated for phonon energy, with
Skyrme [7] as well as with D1S [8]. Here we explore its consequence on mass
parameter.

Another way of limiting the valence space is used in standard shell model:
the introduction of an inert core that put aside the lowest single-particle levels.
We apply this technique for the first time in QRPA calculations.

Both the 2qp energy cut-off and the inert core size are determined according
to the convergence of the mass parameter calculations. It is compared to the one
observed for the built-in QRPA outputs, namely phonon energies and reduced
transition probabilities.

2 Formalism for Vibrational Mass Parameters

2.1 Form TDHFB to Inglis-Belyaev

In 5DCH calculations, the potential energy V, the three moments of inertia Ji
(with i∈ (x,y,z)) and the three vibrational mass parameters Bµν (with (µ,ν) ∈
(0,2)) of the Bohr Hamiltonian

H = V + Trot + Tvib (1)

Trot = 1
2

∑

i

Jiω
2
i (2)

Tvib = 1
2 (B00q̇0

2 +B22q̇2
2 +B02q̇0q̇2) (3)

are determined microscopically at few tens of points of the sextant (β, 0◦ ≤ γ ≤
60 ◦) from constrained Hartree-Fock-Bogolyubov (CHFB) calculations.

Usually the vibrational mass parameters are computed at the cranking order
using the Inglis-Belyaev formula. This formula is established from time depen-
dent Hartree-Fock (TDHFB) framework when making two assumptions. First,
the adiabaticity of the collective motion (ATDHFB). It allows a perturbative de-
velopment of the generalised density, that one stops at the first order (cranking
order). Moreover one neglects the modification of the mean-field brought by the
perturbation of the density. Indeed, the first order term modifying the mean-field
is time-odd. Its inclusion would impose to break the time reversal symmetry,
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essential for the pairing treatment. As a result, the Inglis-Belyaev formula re-
quires only statical ingredients, obtained in CHFB calculations. The dynamics is
“restored” only by the 5DCH diagonalisation. Indeed, in the Gaussian Overlap
Approximation (GOA), as in the Generalized coordinate method, the eigenstates
of the Bohr Hamiltonian are sought as superposition of CHFB states. By mix-
ing CHFB states from different deformation, one mixes different single-particle
level configuration (or quasiparticle occupation u, v). An empty orbital on the
prolate side may be below the Fermi level at oblate deformation. Many con-
figurations, that excitations would involve, are thus explored with deformation.
These are the configurations, or HFB states, with similar “mechanical” energy
of the 5DCH Hamiltonian (sum of V and Tvib) that will be mixed in a vibra-
tional state solution of 5DCH. Now, a vibrational mass parameter, sensitive to
the underlying single-particle structure, often presents large variations with de-
formation, some peaks with huge value. At the deformation where peaks appear,
the ~2/2B term of the requantized 5DCH Hamiltonian will then be very small
allowing to compensate the high potential energy of configurations at this de-
formation. They will take part in the low-energy dynamics. This is the way
that mass parameters drive the deformation of the 5DCH eigenstates, and low-
energy excited states can be deformed despite a spherical HFB minimum as in
Tin isotopes [4, 9] or in 32Mg [10] for example. The mass parameters are then
crucial physical quantities for the whole dynamics, and it is essential to im-
prove their modelling, to include the dynamical mean-field rearrangement, to
enrich their content with correlations beyond the mean-field as well. Indeed,
the mean-field is a statical and a particle independent (as uncorrelated) view of
the nucleus. Only a part of the correlations brought by the interaction can be
included (averaged) in the mean-field construction, many are neglected. The
pairing for example, that affects the mass parameters, is included after each iter-
ation in BCS calculations, or requires the quasiparticle formalism to be included
in mean-field calculations. The Quasiparticle Random Phase Approximation
(QRPA), since taking into account 2 qp correlations that do not enter the HFB
formalism (residual interaction), is a possible path toward enriched vibrational
mass parameter.

2.2 From TDHFB to QRPA

QRPA is another limit of the TDHFB, the small amplitude limit. It provides
a formalism to study the harmonic answer of a nucleus when submitted, at the
equilibrium (at the minimum of potential energy), to a small impulsion. This
answer is sought as coherent (or correlated) superpositions of 2qp excitations,
the phonons. The phonon creation operator is given by:

θ+
n =

∑

kk′

(Xn
kk′α

+
k α

+
k′ − Y nkk′αkαk′), (4)

θ+
n |QRPA〉 =|n〉 (5)
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In the creation of a phonon, 2qp are deleted and (re)created together with differ-
ent X and Y amplitudes. The amplitudes are solutions of the equation:

(
A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
Xn

−Yn

)
(6)

the matrix elements of A and B are calculated from the residual interaction.
Nearly forty years ago, Vautherin [11] established the equivalence of the

ATHFB mass parameter (built from a mean-field with a constraint on an operator
related to the nuclear polarizability) and the cubic inverse energy weighted RPA
sum rule :

Bµν =
~2

2

M−3(Qµν)

M−1(Qµν)
, (7)

with µ, ν ∈ (0, 2), for q0 and q2.
The kth order moment of the Qµν strength distribution is given by:

Mk(Qµν) =
∑

n

ωk|〈φ |θ+
nQ2µ | φ〉〈φ |θ+

nQ2ν | φ〉| (8)

Unfortunately, as already mentioned the calculation time prevents the use of
QRPA, as it is, for the 5DCH mass parameter. In the following, we restrict the
number of 2qp excitations entering in Eq. (5) in order to evaluate Eq. (7).

3 Results

The study is performed on the 110−144Sn isotopes, exploring with the neutron
number a variety of underlying single-particle level spectrum as large as the
one encountered in one nucleus as a function of deformation. The 110−144Sn
isotopes have a minimum of HFB energy at zero deformation, where the QRPA
and the mass parameter calculations will be performed. It allows to decorrelate
the notion of valence space from deformation. Moreover, at zero deformation
the Bµν fulfil the relation:

B00 =
~2

2

M−3,00

[M−1,00]2
= 2B20 = 4B22. (9)

Our study can then be realized on B00 only. The quasi particles, inputs of the
QRPA process, have been determined with the axial HFB code of ref. [12]. In
HFB as well as in QRPA calculations, the effective interaction is D1M [13] and
an harmonic oscillator basis with 11 major shells is used, checked to be sufficient
for convergence in the 100−144Sn isotopes. The axial QRPA calculation have
been achieved with the multi threads version [8] of the code introduced in [14].
The restriction of the qp entering the QRPA calculation is done by defining, in
the whole matrix, QRPA sub-matrix, for which the diagonalization, that is the
fastest part of the QRPA process, is performed.
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3.1 Mass parameter with 2qp energy cut-off

In this section, the reduction of the valence space is realized by setting an energy
cut-off on the 2qp excitations (i.e the sum of the energies of the qp involved in
the excitation). Are considered only 2qp excitations with energy below or equal
that of the cut-off. If the assumption that high energy 2qp excitation do not play
a major role in the nuclear polarizability is correct, it should exist a cut-off value
providing a reasonable approximation of the value obtained without any valence
space restriction, Bno core

00∅ , our absolute reference (full QRPA). (The symbol ∅ is
used in this paper to indicate calculations without any cut-off)

In Figure 1 is drawn R(B00)=Bno core
00cut

/Bno core
00∅ as a function of A. The choice

of a 2qp energy cut-off above 50 MeV is immediate. Below 50 MeV the Bno core
00cut

values lie between 1.5 up to 13.5 times the Bno core
00∅ one. On the contrary, con-

vergence is obtained with energy cut-offs from 50 MeV. In the insert of the Fig-
ure 1, more than 90% in mean (with one exception, 130Sn) of the reference value
is reached with 50-MeV cut-off. It would be interesting to get more information
in the intermediate 20-50 MeV energy range, by setting for example a 40 MeV
cut-off. This is in progress.

One can also note in Figure 1 effects due to the underlying single-particle
level density. For small energy cut-off, the curves present typical shell effects,
large peaks at shell closures. Between A=100 and A=132, 2qp benefit by the
shells lying between the gaps, to generate excitations with little energy. This
leads to the parabolic shape of the curves, with a minimum around N=62) (νg7/2

occupancy). The curves corresponding to 10, 15 and 20 MeV cut-offs are su-
perimposed, thus 2qp excitations with at most 10 MeV are dominating. Their
little energy makes them ineffective at shell closure. At the contrary, the 2qp
excitation with 15-20 MeV energy survive the proximity of the N=82 gap. One
can note also better values obtained in 126−144Sn with a 20 MeV cut-off, in par-
ticular the stiff drop of the corresponding curve (in magenta) from above 5, for
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Figure 1. For different 2qp energy cut-off values and as a function of mass, ratio R(B00)
(see text). A zoom on the ordinate around the value of 1.0 is shown in the insert.
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Figure 1. For different 2qp energy cut-off values and as a function of mass, ratio R(B00)
(see text). A zoom on the ordinate around the value of 1.0 is shown in the insert.
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A=130, to below 2 for heavier mass A≥132. In 132−144Sn (from N ≥82), the
inclusion of the 15-20 MeV range of 2qp excitations reduces significantly the
overestimation of the mass parameter observed with lower energy cut-offs. In
these isotopes, these only excitations, with rather low energy, give mass param-
eter lying below twice the reference. These excitations are not hindered at the
N=82 shell gap, when they are at N=50. All these features indicate that 2qp
excitations with “low” energy carry fine nuclear structure information, they can
not be neglected. Therefore, the use of a high- and low-cut filter for computing
vibrational mass parameter is excluded.

It is worth noting that in Tamm-Dancoff approximation, one obtains B00TDA

greater than Bno core
00∅ in all Sn isotopes [16]. The ratio (1.3 in mean) presents also

variations as a function of A, with a minimum at N=82 shell closure (near 1.1).
Neglecting 2qp excitations with energy higher than 20 MeV, or ground-state
correlations, results in an overestimated mass parameter B00.

Inversely, from 50-MeV cut-off the obtained mass parameters are satisfac-
tory underestimate of the expected value. With one exception, the results of the
insert of Figure 1 lie above 90% of the reference value. Discrepancies are ob-
tained at the beginning of the νg7/2 occupancy, and near shell closure whereas
at the shell closures, 99% of the reference value is reached with cut-off from
50 MeV. In our previous work B00Inglis-Belyaev commonly used in 5DCH, was found,
1.3 times in mean smaller than Bno core

00∅ , with a larger discrepancy at shell closure.
The valuable results obtained with a 50-MeV energy cut-off validates our

hypothesis : the high energy 2qp excitations play a minor role only in the mass
parameter value. Moreover, a 50-MeV energy cut-off provides a reduction in
computation time of a factor 16. In the following we detail an approximation to
be used with the 2qp energy cut-off technique and that will allow us to gain an
additional factor in computation time.

3.2 Mass parameter with inert core

Never applied in QRPA, but largely and commonly used in standard shell model
calculation, is the technique consisting in freezing the deep qp lying at the bot-
tom of the mean-field, in an inert (non excitable) core. We directly imported this
technique in our QRPA calculations and build submatrices by selecting qp that
are rows and columns of the whole QRPA matrices.

We performed the calculations with five different cores, 40Ca, 48Ca, 56Ni,
70Ca, and 78Ni. The results obtained with the two first cores are sufficient
to draw conclusions. On Figure 2 are only reported the ratios Rabs(B00) of
B

40or48Ca
00cut

over Bno core
00∅ obtained with the whole QRPA matrix.

A common feature appears at a first glance in the results drawn in Figure 2:
the dramatic change in the slope and values of the curves when the energy cut-
off reaches 50 MeV. Below, the mass parameter are overestimated, the slopes
exhibit important variations according to the neutron number. Above, only slight
variations are observed (see inserts). However, in the inserts on the left panel the
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Figure 2. As a function of the cut-off value, ratios Rabs(B00) (see text) in 100−140Sn
isotopes for two different inert cores. The color to mass correspondence is given by the
palette at the right. A zoom on ordinate is shown in the insert. Ellipses allow to enlight
the convergence of the curves toward themselves.

Table 1. Mean value and standard deviation of the distribution over the 100−144Sn iso-
topes of the asymptotic values of Rabs(B00) according to the different inert cores

40Ca 48Ca 56Ni 70Ca 78Ni

mean val. 1.04 1.11 1.24 1.53 1.70
stdev 0.02 0.07 0.09 0.29 0.34

curves toward each other is less pronounced, as is less pronounced their own
convergence to their less acceptable asymptotic values, ranging between 1.05
and 1.25. With the heavier inert cores, the curves diverge between themselves.
Such effect may be of great interest to check the pertinence of the convergence
process. In Table 1, are reported the mean value and the standard deviation of
the asymptotic values of the ratio Rabs(B00)=Bcore

00∅ / Bno core
00∅ obtained for different

cores without energy cut-off. All the asymptotic values are, from 56Ni, large
overestimations (by a factor at least 1.15) of the mass parameter. In this paper,
overestimation was previously observed when neglecting ground-state correla-
tion or 2qp excitation with energy below, or equal to, 50 MeV. This of course is
due to the inert core insertion, which reduces de facto ground-state correlations,
since many qp are not participating anymore to Eqs (6) and (8). Frozen in large
inert core (N,Z ≥ 28), there are not so deep qp that would have participated
to in-shells excitations with intermediate energy. Their excitation toward shell
above the Fermi level would require very high energy.
With a 48Ca inert core, few Sn isotopes have a mass parameter slightly under-
estimated when using a 50-MeV energy cut-off, see Figure 2. They also have
asymptotic values lying very near the reference. For these isotopes it should
be possible to take benefit of the 48Ca inert core to reduce more drastically the
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Figure 2. As a function of the cut-off value, ratios Rabs(B00) (see text) in 100−140Sn
isotopes for two different inert cores. The color to mass correspondence is given by the
palette at the right. A zoom on ordinate is shown in the insert. Ellipses allow to highlight
the convergence of the curves toward themselves.

curves merge toward each other when converging to relevant no cut-off values
– lying within 90 percent of the Bno core

00∅ , our reference–. In the right panel the
“inter convergence” of the curves toward each other is less pronounced, as is less
pronounced their own convergence to their less acceptable asymptotic values,
ranging between 1.05 and 1.25. With the heavier inert cores, the curves diverge
between themselves. Such effect may be of great interest to check the pertinence
of the convergence process.

In Table 1, are reported the mean value and the standard deviation of the
asymptotic values of the ratio Rabs(B00)=Bcore

00∅ / Bno core
00∅ obtained for different

cores without energy cut-off.
All the asymptotic values are, from 56Ni, large overestimations (by a factor

at least 1.15) of the mass parameter. In this paper, overestimation was previ-
ously observed when neglecting ground-state correlation or 2qp excitation with
energy below, or equal to, 50 MeV. This of course is due to the inert core in-
sertion, which reduces de facto ground-state correlations, since many qp are not
participating anymore to Eqs (6) and (8). Frozen in large inert core (N,Z ≥ 28),
there are not so deep qp that would have participated to in-shells excitations with
intermediate energy. Their excitation toward shell above the Fermi level would
require very high energy.

Table 1. Mean value and standard deviation of the distribution over the 100−144Sn iso-
topes of the asymptotic values of Rabs(B00) according to the different inert cores

40Ca 48Ca 56Ni 70Ca 78Ni

mean val. 1.04 1.11 1.24 1.53 1.70
stdev 0.02 0.07 0.09 0.29 0.34
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With a 48Ca inert core, few Sn isotopes have a mass parameter slightly un-
derestimated when using a 50-MeV energy cut-off, see Figure 2. They also have
asymptotic values lying very near the reference. For these isotopes it should
be possible to take benefit of the 48Ca inert core to reduce more drastically the
computation time.

Of course, for systematic calculations, the results summed up in Table 1 and
Figure 2 rule out the use of any core heavier than 40Ca in combination with a
50-MeV cut-off. Fortunately, the computation time is significantly reduced, by
a factor 2, when using this inert core. When applying, in addition, a 50-MeV en-
ergy cut-off the total gain in computation time reaches a factor 30. If these two
approximations are robust, it should give room enough for facing calculations of
QRPA mass parameters, with a valence space, in most of the nuclei at any de-
formation. In order to check the robustness of our mass parameter, and to assess
our hypothesis, calculations of intrinsic QRPA outputs, i.e. phonon energy and
their reduced transition probability with valence space have been undertaken.

3.3 QRPA outputs with 2qp energy cut-off

In Figure 3 are drawn as a function of the 2qp energy cut-off, the variation of the
2+

1 and 3−1 energies, and of their associated reduced transition probability, rela-
tively to the reference values obtained without cut-off (and no core). Opposite
trends are observed for the excited state energies and the transition probabilities.

At 50 MeV, neither the energies nor the transition probabilities are con-
verged. The convergence is only obtained from 80 MeV (100 MeV) cut-off
for the 2+

1 (3−1 respectively) energy and transition probability. The 2qp excita-
tions with energy lower or equal to 50 MeV that make 90% of the vibrationalI. Deloncle, F. Lechaftois, S. Péru
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Figure 3. As a function of the cut-off value, ratios determined with cut-off over reference
value, in 100−140Sn isotopes. The color to mass correspondence is given in the palette at
the right. A zoom on the ordinate around the value of 1.0 is shown in the insert.

computation time. Of course, for systematic calculations, the results summed
up in Table 1 and Figure 2 rule out the use of any core heavier than 40Ca in
combination with a 50-MeV cut-off. Fortunately, the computation time is sig-
nificantly reduced, by a factor 2, when using this inert core. When applying, in
addition, a 50-MeV energy cut-off the total gain in computation time reaches a
factor 30. If these two approximations are robust, it should give room enough
for facing calculations of QRPA mass parameters, with a valence space, in most
of the nuclei at any deformation. In order to check the robustness of our mass
parameter, and to assess our hypothesis, calculations of intrinsic QRPA outputs,
i.e. phonon energy and their reduced transition probability with valence space
have been undertaken.

3.3 QRPA outputs with 2qp energy cut-off

In Figure 3 are drawn as a function of the 2qp energy cut-off, the variation of the
2+1 and 3−1 energies, and of their associated reduced transition probability, rela-
tively to the reference values obtained without cut-off (and no core). Opposite
trends are observed for the excited state energies and the transition probabilities.
At 50 MeV, neither the energies nor the transition probabilities are converged.
The convergence is only obtained from 80 MeV (100 MeV) cut-off for the 2+

1

(3−1 respectively) energy and transition probability. The 2qp excitations with
energy lower or equal to 50 MeV that make 90% of the vibrational mass param-
eter B00 represent of the order of 70% only of what is needed to build the first
excited states. The lack of high-energy 2qp excitations has heavy consequences.
Inversely, it confirms their secondary role in the polarizability. In Figure 3, one
can also notice, on the one hand, the greater sensitivity of the transition proba-
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Figure 3. As a function of the cut-off value, ratios determined with cut-off over reference
value, in 100−140Sn isotopes. The color to mass correspondence is given in the palette at
the right. A zoom on the ordinate around the value of 1.0 is shown in the insert.
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mass parameter B00 represent of the order of 70% only of what is needed to
build the first excited states. The lack of high-energy 2qp excitations has heavy
consequences. Inversely, it confirms their secondary role in the polarizability.

In Figure 3, one can also notice, on the one hand, the greater sensitivity of
the transition probability, as compared to the excited state energy, to missing 2qp
excitations with energy comprised between 20 and 50 MeV, and one the other
hand, the necessity to include 2qp excitation of even lower energy, between 10
and 20 MeV, for an accurate calculation of the B(E3).

3.4 QRPA outputs with inert core

In Table 2, are reported the mean value and the standard deviation of the asymp-
totic values (i.e without energy cut-off) of the ratios Rabs(X)=Xcore

∅ / Xno core
∅ ,

where X stands for E(2+
1 ) or E(3−1 ), obtained with different cores. Once more

the results for the 2+
1 differ from those for the 3−1 . The latter that exhibit better

convergence properties though not sufficient to give valuable results with any of
the cores used here. It is worth noting that we obtained satisfactory values for
both state energies when using a much smaller inert core, 16O.

Table 2. Mean value and standard deviation of the distribution over the 100−144Sn iso-
topes of the asymptotic values of Rabs(E(2+

1 )) and Rabs(E(3−1 )) obtained with different
inert cores

40Ca 48Ca 56Ni 70Ca 78Ni

E(2+
1 )

mean val. 1.39 1.47 1.65 1.70 1.79
stdev 0.31 0.36 0.49 0.54 0.61

E(3−1 )
mean val. 1.16 1.19 1.27 1.30 1.34

stdev 0.06 0.07 0.10 0.11 0.13

As a last result is shown in Figure 4 the remarkable deceptive convergence
scheme of the relative ratio Rrel(E(2+

1 )) of E(2+
1 )core
cut−off over E(2+

1 )core
∅ ob-

tained with 78Ni as inert core. The convergence toward the asymptotic no cut-off
value obtained with a given core has the appearance of a fast and efficient pro-
cess, despite large difference between the asymptotic no cut-off value obtained
with a core at a given mass and the absolute value with no cut-off, no core.

These results are astonishing since in standard shell models calculations
larger cores are commonly used. It would be possible to perform the required
normalizations (on each multipolarity) since we can get the absolute value –
full QRPA calculations are always possible –. That would be, however, counter
productive since time-consuming and would lead to the loss of the “universal”
and coherent character of the 5DCH approach, which, starting from one density-
dependent force only, aims to describe nuclei over the whole chart.
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Figure 4. As a function of the cut-off value, ratios Rrel(E(2+1 )) (see text) in 100−140Sn
isotopes for the 78Ni inert core. The color to mass correspondence is given by the palette
at the right. A zoom on ordinate is provided in the insert.

parameter calculations on few tens of (β,γ) points. The vibrational mass param-
eters appear very robust against valence space limitations, allowing a factor of
30 to be reached in the computation time reduction. On the contrary, unreliable
values are obtained for intrinsic QRPA outputs in the same approximations, that
exhibit deceptive convergence.
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[4] S. Péru and M. Martini, Eur. Phys. J. A 50, 88 (2014).
[5] B. Mohammed-Azizi, Electronic J. Theor. Phys. 9, No. 27 (2012) 143-158.
[6] E.Kh. Yuldashbaeva, J. Libert, P. Quentin and M. Girod, Phys. Lett. B 461, 1 (1999).
[7] K. Yoshida and N. Van Giai, Phys. Rev. C 78, 064316 (2008).
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4 Conclusions

The introduction of the valence space notion in QRPA calculations, via 2qp en-
ergy cut-off and inert core, is an important breakthrough for the 5DCH frame-
work. It offers a glimpse of a possible path toward valuable vibrational mass
parameter calculations on few tens of (β,γ) points. The vibrational mass param-
eters appear very robust against valence space limitations, allowing a factor of
30 to be reached in the computation time reduction. On the contrary, unreliable
values are obtained for intrinsic QRPA outputs in the same approximations, that
exhibit deceptive convergence.
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