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Abstract. The effect of quadrupole-octupole deformations on the energy and
magnetic properties of high-K isomeric states in even-even heavy and super-
heavy nuclei is studied within a deformed shell model (DSM) with BCS pairing
interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic
dipole moments are calculated over a wide range of quadrupole and octupole
deformations. It is found that in most of the considered nuclei the magnetic
moments exhibit a pronounced sensitivity to the octupole deformation. At the
same time in many cases the behaviour of the 2qp energies shows minima which
suggest that the presence of high-K isomeric states may be associated with the
presence of octupole softness or even with octupole deformation. In the present
work the influence of the BCS pairing strength on the energy of the blocked iso-
mer configuration is examined. The analysis of the 2qp energy minima obtained
in the space of quadrupole-octupole deformations for different pairing strengths
shows that the formation of high-K isomeric states is a subtle effect depending
on both, deformations and nuclear pairing correlations.

1 Introduction

It is well known that the basic properties of atomic nuclei are determined by
the nuclear shell structure [1]. In most nuclei this structure leads to the appear-
ance of different kinds of shape deformation. Although the quadrupole (ellip-
soidal) shapes are mostly observed, many experimental data on nuclear spectra
also suggest the presence of more complicated quadrupole-octupole (reflection-
asymmetric) shapes [2]. The latter cause the manifestation of collective phe-
nomena such as alternating-parity bands in even-even nuclei and quasi parity-
doublet spectra in odd-mass nuclei with the observation of enhanced E1 and E3
transitions between levels with opposite parity. Also, the collective deformation
modifies the intrinsic mean nucleonic field and causes strong non-linear changes
in the nuclear shell structure and the attendant single-particle (s.p.) phenom-
ena away from the zero deformation case. A phenomenon deeply originating
from the shell structure is the appearance of nuclear high-K isomeric states [3].
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Similarly to the origin of the reflection-asymmetric deformations, the interplay
of specific s.p. orbitals near the Fermi level may lead to the formation of two-
or multi- quasiparticle excites states with a large value of the angular momen-
tum projection K on the principal symmetry axis. Due to the large amount
of momentum transfer, ∆K, needed for a transition to a neighbouring lower-
energy state, the decay of such a state may be strongly suppressed due to a
K forbiddenness rule and thus an isomeric state is formed. In some cases the
half-life of such a state can be longer than the half-life of the nucleus in the
ground state. Presently a variety of high K isomeric states are known in differ-
ent mass regions [4]. As far as both the phenomena, deformation and isomerism,
have common shell roots it is clear that the formation of high-K isomeric states
should be tightly correlated with nuclear deformation properties. Recently it was
shown within a deformed shell model (DSM) with BCS-pairing interaction, that
some isomer excitation energies and especially the magnetic dipole moments of
heavy even-even nuclei exhibit pronounced sensitivity to the octupole deforma-
tion [5, 6]. In particular, minima in the neutron two-quasiparticle (2qp) energy
surfaces were indicated at non-zero octupole deformation. The study was im-
plemented for 2qp states in the regions of heavy actinide (U, Pu and Cm) and
rare-earth (Nd, Sm and Gd) nuclei. Similar influence of the octupole defor-
mation on the isomeric energies was found through configuration-constrained
potential energy surface (PES) calculations applied in the same region of ac-
tinide nuclei [7]. A recent more systematic study involving heavier Fm and No
isotopes and the superheavy nucleus 270Ds showed that three different groups
of nuclei can be outlined: with pronounced, shallow and missing minima in the
2qp energy surfaces with respect to the octupole deformation [8]. As a result,
regions of nuclei with possible octupole softness as well as possible octupole
deformation in the high-K isomeric states were indicated. This finding shows
the need of further more detailed analysis of the mechanism which causes the
appearance of 2qp energy minima as well as the factors which determine their
evolution in deformation space.

In this article first we illustrate the evolution of the 2qp energy minima for
highK-isomeric states of heavy even-even nuclei calculated within the DSM+BCS
approach without blocking the excited 2qp configuration in the BCS procedure.
Further we show the result of calculations performed in 254No and 270Ds by
blocking the two excited orbitals and by varying the BCS pairing strength. As
will be seen below, this allows us to assess the roles of the blocking effect and
the pairing strength in the appearance of 2qp energy minima in the quadrupole-
octupole deformation space. Consequently we are able to estimate the predictive
value of the theoretical results which suggest different regions of deformation
with possible formation of high K-isomeric states.

The paper is organized as follows. In Section 2 the DSM+BCS calculation
is briefly explained. In Section 3 numerical results for 2qp energies with and
without blocking are given. In Section 4 the results are summarized.
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2 Deformed Shell Model with Pairing Interaction

We apply a deformed shell model (DSM) with a Woods-Saxon potential allow-
ing axial quadrupole and octupole deformations [9]. The DSM Hamiltonian is

Hsp = T + Vws + Vs.o. + Vc, (1)

where

Vws(r, β̂) = V0

[
1 + exp

(
distΣ(r, β̂)

a

)]−1

(2)

is the Woods-Saxon potential with β̂ ≡ (β2, β3, β4, β5, β6). The quantity
distΣ(r, β̂) is the distance between the point r and the nuclear surface repre-
sented by

R(θ, β̂) = c(β̂)R0


1 +

∑

λ=2,3,...

βλYλ0(cos θ)


 , (3)

where c(β̂) is a scaling factor to keep the volume fixed. Vs.o. and Vc are the
spin-orbit and Coulomb terms whose analytic form is given in [9].

The Hamiltonian (1) is diagonalized in the axially symmetric deformed har-
monic oscillator basis |NnzΛΩ〉, and the s.p. wave function is obtained in the
form

FΩ =
∑

NnzΛ

CΩ
NnzΛ|NnzΛΩ〉. (4)

In the case of non-zero octupole deformation the wave function (4) appears with
mixed s.p. parity given by

〈π̂sp〉 = 〈FΩ|π̂sp|FΩ〉
=

∑

NnzΛ

(−1)N |CΩ
NnzΛ|2. (5)

Hereafter we imply that in the physically meaningful cases the average parity
remains close to one of the good values +1 or −1.

The pairing effect is taken into account through a BCS procedure with con-
stant pairing interaction applied to the DSM s.p. levels. The pairing constants
Gn/p for neutrons(n)/protons(p) are taken as [10] (see page 311):

Gn/p =

(
g0 ∓ g1

N − Z
A

)
/A. (6)

The parameters g0 and g1 are originally taken in [10] as g0 = 19.2 MeV and
g1 = 7.4 MeV. The BCS equation for the pairing gap ∆ and the chemical poten-
tial λ is solved within energy windows including (15N)1/2 orbitals for neutrons
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and (15Z)1/2 orbitals for protons below and above the Fermi surface. As a start-
ing point in the numerical solution of the gap equation, the phenomenological
value ∆ = 12 ·A−1/2 is used for the pairing gap, and the average value between
the energies of the last occupied orbital and the first unoccupied orbital is used
for the chemical potential λ.

In the DSM+BCS calculations performed in [5, 6, 8] without blocking the
excited orbitals the parameter g0 was slightly decreased to g0 = 17.8 MeV, to
provide for the different deformations overall gap values comparable with the
experimentally estimated gaps in the considered nuclei. For tuning the pairing
constants one should also mind the above mentioned empirical behaviour of the
pairing gap ∆ = 12·A−1/2. In sec. 3 we shall see that if in the same calculations
the blocking is taken into account, in contrast, one may need to consider larger
g0-values, even larger than 20 MeV.

The energy of a 2qp configuration with a broken pair is taken as EKπ2qp =

EΩ1π1
1qp + EΩ2π2

1qp , with

EΩπ
1qp =

√
(EΩπ

sp − λ)2 + ∆2 (7)

being the one-quasiparticle energy. TheK-value is determined asK = Ω1+Ω2,
while the parity of the configuration is π = π1 · π2. More precisely, in the case
of non-zero octupole deformation one has π = sign〈π1〉 · sign〈π2〉.

The magnetic moment of the 2qp configuration is determined as [11]

µ = µN

[
gR
I(I + 1)−K2

I + 1
+ gK

K2

I + 1

]
, (8)

with µN = e~/(2mc), gR = Z/A and

gK =
1

K

∑

n=1,2

〈FΩn
|gs · Σ + gl · Λ|FΩn

〉, (9)

where Σ = Ω ∓ Λ is the intrinsic spin projection, and gl and gs are the stan-
dard gyromagnetic ratios. The proton and neutron gs values are attenuated by a
commonly used factor of 0.6 compared to the free values.

3 Numerical Results and Discussion

By using the DSM+BCS approach of the previous section, the energies and mag-
netic moments of 2qp high-K isomeric states in several groups of heavy even-
even nuclei were calculated over a net of quadrupole (β2) and octupole (β3) de-
formation parameters. For each isomeric state/nucleus the calculation provides
a 2qp-energy surface in the (β2, β3) deformation space and a two-dimensional
pattern for the magnetic dipole moment in the isomeric state as a function of β2

and β3.
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Figure 1. Two-quasiparticle energy and magnetic moment of theKπ = 8−{ν7/2[624]⊗
ν9/2[734]} configuration in 254No calculated within DSM+BCS without blocking as a
functions of β2 and β3.

Figure 2. Two-quasiparticle energies for Kπ = 8− isomeric states in 246Cm, 250Fm and
252No and theKπ = 6+ isomer in 250No calculated within DSM+BCS without blocking
as functions of β2 and β3.
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Here, first we illustrate results of calculations in which the orbitals from
which the isomeric state is formed are not blocked in the BCS procedure. In
Figure 1 the result for the Kπ = 8− isomeric state based on the neutron (ν)
{ν7/2[624]⊗ ν9/2[734]} configuration in 254No is given as one of the best ex-
amples for the influence of the octupole deformation. The 2qp energy surface
in Figure 1 (left) shows the presence of a considerably deep minimum, about
0.32 MeV, at non-zero octupole deformation (β2 = 0.302, β3 = 0.212). The
obtaining of such a minimum suggests the possibility for stable octupole defor-
mation in this state. In a similar way the presence of a 0.42 MeV minimum
was obtained for the Kπ = 6−{ν5/2[633] ⊗ ν7/2[743]} isomer in 234U [8].
We remark that the configuration-constrained potential energy surface (PES)
calculations reported for the same isomeric state in Ref. [7] show the pres-
ence of a minimum at non-zero octupole deformation, (β2, β3) ≈ (0.22, 0.03).
These results emphasize the need of a detailed comparative examination of the
quadrupole-octupole deformation effects in the high-K isomeric states through
different model approaches.

The plot in Figure 1 (right) shows that the magnetic moment in the Kπ =
8− isomer of 254No essentially changes in the direction of non-zero octupole
deformation, whereas its value at β3 = 0 shows a very weak dependence on
the quadrupole deformation. The appearance of the 2qp energy minimum in
Figure 1 (left) as well as the behaviour of the magnetic moment in Figure 1
(right) can be explained in relation to the crossing of the neutron 7/2[624] and
9/2[734] orbitals at some non-zero octupole deformation similarly to the case of
Kπ = 8− isomer in 244Pu (see Figure 1 in [5]).

In Figure 2 we illustrate the calculated 2qp energy surfaces in the (β2, β3)
space for the Kπ = 8− isomeric states in 246Cm, 250Fm and 252No based on
the same {ν7/2[624]⊗ν9/2[734]} configuration as in 254No, and the Kπ = 6+

isomer in 250No based on the {ν5/2[622]⊗ ν7/2[624]} configuration. The 2qp
energy surfaces in Figure 2 correspond to the presence of shallow minima at
non-zero octupole deformations, with the depth of the minima being between
40 and 80 keV (see Table 1 in [8]). The obtained result gives an indication of
possible softness of the nucleus against octupole deformation in these states.

An appropriate example for the effect of the octupole deformation in the
forming of high-K isomeric states in superheavy nuclei is the case of the nu-
cleus 270Ds. For this nucleus two possible isomeric configurations, Kπ =
9−{ν7/2[613] ⊗ ν11/2[725]} and Kπ = 10−{ν9/2[615] ⊗ ν11/2[725]}, are
proposed [13]. We have examined both of them and the result for the 2qp en-
ergy surfaces in the quadrupole-octupole space is given in Figure 3. We see that
in both cases, Kπ = 9− and Kπ = 10−, the DSM+BCS calculations predict
non-zero octupole deformation in the 2qp energy minimum. Especially for the
Kπ = 9− configuration the depth of the minimum (∼ 0.14 MeV) is consider-
able. This example shows that the quadrupole-octupole shape effects may also
be of essential importance in determining the isomeric properties of the super-
heavy nuclei.
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Figure 3. Two-quasiparticle energies for possible Kπ = 9− and Kπ = 10− isomeric
states in 270Ds calculated within DSM+BCS without blocking as functions of β2 and β3.

Figure 4. Two-quasiparticle energy of the Kπ = 8−{ν7/2[624] ⊗ ν9/2[734]} config-
uration in 254No as a function of β2 and β3 calculated by DSM+BCS with blocking for
different values of the pairing parameter g0.
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Now, let us consider the case of DSM+BCS calculations in which the two or-
bitals providing the high-K isomeric state are blocked in the solution of the BCS
gap equation. Hereafter some preliminary results are discussed. Initially the cal-
culation was applied to the Kπ = 8− isomer in 254No with Nilsson’s original
parameter values g0 = 19.2 MeV and g1 = 7.4 MeV [10] used in the paring
constants in Eq (6). The analysis of the results showed that in most of parts of
the (β2, β3) deformation space the gap equation does not possess a solution and
the 2qp energy surface can not be obtained with a relevant shape allowing us to
make any conclusion. For the previously used value of the parameter g0 = 17.8
MeV [5, 6, 8] the problem with the BCS solution becomes even stronger. The
collapse of the BCS pairing with the appearance of broken pairs is a known ef-
fect which can be prevented by increasing the pairing constants. Though the
reduction of the gap due to the blocking effect has reasonable physical grounds
the arbitrary increase of the pairing strength to take it into account may lead to
inconsistencies in the description of different nuclear characteristics [12]. There-
fore any change in the pairing strength has to be performed with caution. Thus
we performed calculations with slightly larger values of the parameter g0 > 19
MeV by keeping g1 = 7.4 MeV. The results of calculations with several g0 val-
ues, g0 = 20, 21, 22 and 23 MeV, are given in Table 1, and the respective patterns
for the 2qp energy in the deformation space are illustrated in Figure 4. It is seen
that both the positions and the depths of the obtained energy minima strongly
depend on the value of the pairing parameter g0. Thus for the lowest considered
g0 = 20 MeV the minimum is positioned at (β2 = 0.254, β3 = 0.07) with a
relative depth of 0.05 MeV. For the largest g0 = 23 MeV the minimum is shifted
at (β2 = 0.268, β3 = 0.150) with a depth of 0.11 MeV. At the same time the
neutron pairing gap ∆n raises from 0.45 MeV to 1.22 MeV together with the
raising octupole deformation in the minimum. For 254No the empirical ground-
state gap is ∆ = 12 · A−1/2 = 0.75 MeV and we may assume that in the case
of blocking the neutron gap ∆n can not exceed it. Then a reasonable estimation
for the 2qp energy minimum could be associated to (β2 = 0.25, β3 = 0.1) with
a depth of about 0.08 MeV. Thus we see that the 2qp minimum may appear to
be shallower when the blocking effect is taken into account.

Table 1. Location and depth (in MeV) of the energy minima obtained for
the 8−{ν7/2[624] ⊗ ν9/2[734]} configuration in 254No and the 9−{ν7/2[613] ⊗
ν11/2[725]} configuration in 270Ds in dependence on the pairing parameter g0 (in MeV).
The corresponding neutron pairing gaps ∆n (in MeV) are also given

254No 270Ds
g0 (β2, β3) depth ∆n g0 (β2, β3) depth ∆n

20 0.254, 0.070 0.050 0.454 19 0.255, 0.208 0.315 0.258
21 0.256, 0.096 0.075 0.743 20 0.258, 0.158 0.097 0.575
22 0.261, 0.126 0.094 0.989 21 0.260, 0.100 0.021 0.791
23 0.268, 0.150 0.110 1.217 22 0.251, 0.038 0.001 0.954
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Figure 5. The same as Figure 4, but for the Kπ = 9−{ν7/2[613] ⊗ ν11/2[725]} con-
figuration in 270Ds.

Similar calculations (DSM+BCS+blocking) were performed for the Kπ =
9−{ν7/2[613] ⊗ ν11/2[725]} configuration in 270Ds. The obtained result is
shown in Table 1 and in Figure 5. Again, we see a pronounced dependence of
the 2qp energy minima on the pairing strength. We notice a slightly stronger
variation of the positions of the minima in octupole direction with the change
of g0 compared to 254No. Moreover, in contrast to 254No we find that here the
octupole deformation and the depth of 2qp energy minima decrease with the in-
crease of g0. For g0 = 19 MeV the minimum is at (β2 = 0.255, β3 = 0.208)
with a depth of 0.315 MeV. For g0 = 22 MeV the pattern moves to essentially
lower octupole deformation β3 = 0.04 while the 2qp minimum practically van-
ishes. Considering that for 270Ds the empirical pairing gap in the ground state
is 0.73 MeV one may assume that the physically reasonable ∆n is much lower.
According to the correlation in Table 1 this can lead to the estimation that a min-
imum in the energy of the considered 9− state may be located at relatively large
octupole deformation β3 ≥ 0.15 with a depth larger than 0.1 MeV.

We remark that for both considered configurations in 254No and 270Ds the
obtained dependencies of the octupole deformations and the depths of the 2qp
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energy minima on the increasing pairing strength are different. However, in or-
der to make any conclusion one has to estimate the pairing strength correspond-
ing to the broken neutron pairs in a more unambiguous way. For the moment we
can only say that the present preliminary results emphasize the need for further
detailed study of the effects of the deformation and pairing on the formation of
high-K isomeric states in heavy and superheavy nuclei.

4 Summary

The implemented DSM+BCS calculations suggest that octupole deformation
may play a considerable role in the formation of two-quasiparticle high-K iso-
meric states in even-even heavy and superheavy nuclei. The cases of shallow
octupole minima obtained for the 2qp energies indicate an octupole softness of
the nuclei in their respective isomeric states. The pronounced octupole min-
ima observed in several nuclei give an indication for the possible presence of
octupole deformation in some isomeric states. The pronounced sensitivity of
the magnetic dipole moments to the octupole deformation suggests that future
magnetic-moment measurements would provide useful constraints on the degree
of octupole deformation. The physically more relevant DSM+BCS calculations
taking the blocking effect into account indicate strong dependence of the even-
tual octupole softness/deformation in the high-K isomeric states of heavy and
superheavy nuclei on the pairing interaction strength. It is shown that in the case
of blocking the role of the deformation may be a bit more subtle. Further de-
tailed study will be needed to unambiguously clarify this role and to improve the
predictive value of the approach used with respect to the appearance of complex
deformed shapes in nuclear isomeric states.
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