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Abstract. We present some particular applications within the algebraic real-
ization of the Pairing-plus-Quadrupole /PQM/ for realistic sd-shell nuclear sys-
tems. The PQM uses the framework of the Elliott’s SU(3) model. The prob-
ability distribution of the SU(3) basis states within the dynamical symmetries,
corresponding to the isovector, isoscalar and total pairing eigenstates is obtained
through a numerical diagonalization of the PQM Hamiltonian in each limit. This
allows the investigation of the interplay between the pairing and quadrupole in-
teractions in the Hamiltonian of the PQM. The relative strengths of the dynam-
ically symmetric quadrupole-quadrupole interaction with the considered types
of pairing interactions are investigated systematically. Specifically, we illustrate
the evolution in the importance of different terms in the Hamiltonian by study-
ing the chain of nuclei with 2 and 4 valence sd-shell particles going from the
neutron-deficient to the neutron-rich part of the nuclear chart.

1 Introduction

The pairing [1] and the quadrupole-quadrupole [2] interactions are the most im-
portant short- and long-range interactions that have to be taken into account in
the shell-model description of the nuclear systems [3]. In general, they domi-
nate for nuclei with valence particles occupying different parts of the shell, but
in many cases there are other characteristics, like the proton-neutron interactions
or the isospin structure, that are also of great importance. This motivates the de-
velopment of an extension of the Pairing-plus-Quadrupole Model /PQM/ [4] that
also accounts for spin-isospin dependence of the nuclear excitation spectra.

The neutron deficient N ∼ Z nuclei are an interesting area for research
with nuclei taking part in the rp-process of nucleosynthesis of the elements in
nature. Here, the two modes – the pairing and the quadrupole interaction –
compete. Moreover, interesting effects and the role of the isoscalar pairing can
be studied as well. For these nuclei, full-space shell-model calculations are often
difficult and lie beyond current computational capabilities. On the other hand,
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symmetries may be present in some systems. Their importance lies in the fact
that they allow for finding elegant solutions by offering a convenient choice of
the basis turning the model space into one of a manageable size.

In this work, we describe the application of an extended algebraic realization
[5] of the PQM theory for nuclei with two or four valence particles in the ds
shell. The outline of perspectives and its future use for heavier shells and in
two-shell model spaces is also discussed.

2 Algebraic Structure of the Pairing-plus-Quadrupole Model

2.1 Reduction schemes in the microscopic shell model

We start with a short explanation and analysis of the reduction schemes in Eqs.
(1) and (2) below [5, 8], which give the reduction of the algebraic realization of
the shell-model algebra.

{1m} U(4Ω)
↓

{f̃} [U(Ω) ⊗ UST (4)] {f}
↓ ↘ α ↓

[µ̃] [SO(Ω) [SU(3) ⊗ SUST (4)] {f ′}
(ν[p]) ⇔ SO(8) (λ, µ) ∼ SO(6) [P ]
β ↓ ↙ K ↓
L [SOL(3) ⊗ SUS(2)]⊗ SUT (2) S, T

↓ ↓
J SUJ(2) ⊗ SUT (2) T

(1)

{1m} U(4Ω)
↓{

f̃
}

[U(2Ω) ⊗ UT (2)]

↓ ↓
〈µ̃s〉 [Sp(2Ω) ⊗ SUT (2)]

↓ ↘α ↓
[µ̃s] [SO(Ω)⊗ SUs(2)] [SU(3)⊗ SUs(2)] ⊗SUT (2)]

⇔ SO(5) (λ, µ)
β ↓ ↙K ↓
LS [SOL(3) ⊗ SUs(2)] ⊗SUT (2)]

↘ ↓
J SUJ(2) ⊗SUT (2)]

{f}

T

T

T

T

(2)

Equation (1) starts with the reduction of the shell model algebra

U(4Ω) ⊃ U(Ω)⊗ UST (4) (3)

into the spatial U(Ω) and spin-isospin UST (4) branches which are complemen-
tary [6]. The chain at the right-hand side of it

SUST (4) ⊃ SUS(2)⊗ SUT (2) (4)

116



Pairing-Quadrupole Connections in the Algebraic Shell Model Applied to ...

of the Wigner’s supermultiplet model [7] gives the spin S and isospin T of the
basis states of the shell model. In parallel to it, on the left-hand side we show
the two possible reductions of the spatial part U(Ω) to the SO(3) algebra of the
angular momentum. The middle chain [2]

U(Ω) ⊃ SU(3) ⊃ SOL(3) (5)

defines the rotational limit of the model with only quadrupole-quadrupole inter-
action taken into account. The one on the left – through SO(Ω) whose represen-
tations are equivalent to the SO(8)-ones, which is the algebra of the isoscalar and
isovector pairing interaction, defines the pairing limit of the shell-model algebra.
Both these chains are complementary to the spin-isospin UST (4) algebra. So,
the important result, established in [8] is that the spatial subalgebra U(Ω) of the
shell-model algebra U(4Ω) contains two distinct dynamical symmetries defined
by the reduction chains: through SO(Ω) ∼ SO(8) and through SU(3).

Similarly, for the case when the pure isoscalar or isovector pairings are in-
volved, we use the following reductions of U(4Ω) algebra:

U(4Ω) ⊃ U(2Ω)⊗ UT (2) ⊃ [U(Ω)⊗ US(2)]⊗ UT (2) (6)

U(4Ω) ⊃ U(2Ω)⊗ US(2) ⊃ [U(Ω)⊗ UT (2)]⊗ US(2) (7)

The diagram given in Eq. (2) corresponds to the case of the pure isoscalar pair-
ing. The pure isovector case is obtained by replacing S with T and vice versa.
Using in this case the complementarity of SO(Ω) ∼ SOσ(5), where σ = S∨T ,
we obtain the shell model pairing reductions that correspond to the well known
three limits of the algebraic SO(8) pairing model

SO(8)
↙ ↓ ↘

SO(6) SOT (5)⊗ SOS(3) SOS(5)⊗ SOT (3)
↘ ↓ ↙

SOT (3)⊗ SOS(3)

(8)

2.2 Relation between the pairing and the SU(3) basis states

Consequently, each pairing chain determines a full-basis set [9] that can be de-
fined in the following way:

|ΨP 〉 ≡ |{f}, i, βL, S; JM〉 , (9)

where the set of quantum numbers {i} corresponds to the set of labels
{ν[p1, p2, p3]} of SO(8) for the left branch of the reduction scheme in Eq. (1)
and the left branch of (8) and to the set {υS , tS , β} and {υT , tT , β} for the
isoscalar and isovector cases which correspond to the middle and right branches
of (8). We choose to expand the states of the pairing bases (9), through the set
of rotational basis states

|ΨR〉 ≡ |{f}α(λ, µ)KL,S; JM〉 , (10)
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since the microscopic SU(3) model based on the three-dimensional harmonic
oscillator has a well-developed theory, including the Wigner-Racah algebra for
the calculation of matrix elements [10] in the SU(3) basis. Hence, using the
expansion

|ΨP 〉i =
∑

j

Cij |ΨR〉j . (11)

and the diagonalization procedure for the pairing interaction in the SU(3) basis

〈ΨP |Hpair|ΨP 〉 = Epair(m, i, [P ], (ST )) (12)

=
∑

jk

C∗kiCij .δkj .k〈ΨR|Hpair|ΨR〉j ,

we obtain numerically the probability |Cij |2 with which the states of the SU(3)
basis enter into the expansion of the pairing basis. This expansion could help
evaluate the importance (weight) of the different SU(3) states when we need to
impose restrictions on the basis because of computational difficulties. Also, the
known relations between the SU(3) labels (λ, µ) and the β, γ shape variables
of the geometrical model can be used for the analysis of the deformations of the
pairing states.

2.3 The Hamiltonian of the PQM

For the purpose of our investigation we use the Hamiltonian

H = H0 + Vres (13)

of the PQM [11], where H0 is the harmonic oscillator term or the single-particle
interactions, that needs to be introduced when considering the shell plus orbital
or the two-shell cases in order to place correctly the single-particle configura-
tions with respect to each other. The residual interaction is used in the form

Vres = G0S
†.S +G1P

†.P − χ

2
Q.Q, (14)

where the components of the quadrupole operator are

Qµ =
∑

l

√
8(2l + 1)(a†l 12 1

2
× ãl 12 1

2
)
(200)

(µ00)
(15)

and in (14) Q.Q = 4C2
SU(3)− 3L2 where the eigenvalue of the second invariant

of SU(3) is C2
SU(3) = λ2 + λµ + µ2 + 3(λ + µ). The pairing interactions in

(14) are defined as

VPisc = G0S
†.S and VPiv = G1P

†.P, (16)

where

S†µ =
∑

l

βl

√
2l + 1

2
(a†l 12 1

2
× ã†

l 12
1
2

)
(010)

(0µ0)
(17)
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and

P †µ =
∑

l

βl

√
2l + 1

2
(a†l 12 1

2
× ã†

l 12
1
2

)
(001)

(00µ)
. (18)

The microscopic tensor operators (15), (17) and (18) are part of the SU(Ω)

generators, since the operators a†
l 12

1
2

(al 12
1
2
) are creation (annihilation) operators

of a nucleon on an orbit l, with spin s = 1/2 and isospin t = 1/2. The last two
are part of the generators of the SO(Ω) and the SO(8) algebras and their second
order Casimir invariants are related. This allows us to investigate the influence
of the different terms in the residual interactions on the spectra in real nuclear
systems.

3 Calculations and Results

In this contribution, we present the application of the dynamical symmetries that
were established in the Microscopic Shell Model in the ds shell for the even-even
nuclei with 2 valence particles: 18Ne and 18O, and with 4 valence particles: 20Ne
as well as 20O. The following observables are evaluated for the spectra of these
nuclei: the root mean squared /RMS/ deviation of the model energies from the

experimental ones σ =
√∑

i (EiTh − EiExp)
2
/d (per degree of freedom d), the

weight of each of the isoscalar G0, isovector G1, and quadrupole χ interactions
in the correct reproduction of the experiment. Also, information for the structure
of the wave-function and/or B(E2) transitions may be added for best-fit values.
We also aim to improve our best-fit results for the two-parameter Hamiltonian
by considering the three-parameter case. The 4 valence-particle nucleus 20Mg is
excluded from our calculation because of not enough experimental states to be
included in the RMS estimate.

To do our calculations, we work in the SU(3) basis (10) which is generated
by using the rules of U(Ω) to SU(3) reduction (tabulated in the code [12]). Re-
lying on tools developed to calculate reduced matrix elements for any type of
physical operator between different SU(3) irreps [13], we calculate the matrix
elements of all the operators in this basis and then perform a numerical diago-
nalization to obtain the energy spectrum and the eigenstates.

3.1 Two-parameter results

The Hamiltonian we use for studying the energy spectrum of the considered
realistic nuclear systems in the case of two parameters, can be written as

Vres =
1

2
(1− x)V1 +

1

2
(1 + x)V2, (19)

where x is called a control parameter. At x = −1 we have pure V1 interaction
and at x = 1 the limiting case of pure V2 interaction is realized. We investigate
in all cases the interrelations of the pairing interactions (16) on the quadrupole-
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quadrupole interaction, hence V2 = −χ2Q.Q. The pairing interactions could be

V1 = VPt = G[S†.S + P †.P ] (20)

withG0 = G1, or V1 = G0S
†.S and V1 = G1P

†.P . So, compared to the earlier
SU(3) one-shell realization [11,14] of the PQM, we use a more general pairing
Hamiltonian which includes proton-neutron pairing terms as well.

Now, let us use the energies of the low-lying states of the nuclear systems.
In Figure 1, we present the results of a minimization procedure for the root-
mean-squared /RMS/ value σ with respect to the two parameters G and χ of
the residual interactions (19). The darker spots in the middle of the figures on
the left present the intervals of change of the parameters for which we have the
minimal values of σ or the values of the parameters fitted to a set of the lowest-
lying positive-parity experimental energies EiExp from the observed spectra [15]
of a real nuclear system. The black dashed line in Figure 1(a), (c), (e), and
(g) connects the values of each of the parameters G and χ at their respective
limiting cases of pure pairing or pure quadrupole-quadrupole interactions. This
line could be assigned as the axis of change of the parameter −1 ≤ x ≤ 1 as is
used in Figures 1(b), (d), (f) and (h). The regions of the optimal values for the
parameters lie on this line and their position in respect to its center could serve
as a measure of the influence of each of the terms from the residual interactions
on the energy spectra of the considered nucleus. An interesting observation from
these two-parameter figures is that similar results for σ can be obtained by using
various pairs of values (χ,G). This corresponds to somewhat different spectra
in all these cases - from purely rotational to somewhat more pairing-like modes.

In the case of 20Ne (see the upper three rows of Figure 1), the RMS esti-
mate is performed over the 21 lowest-lying positive-parity experimental energies
EiExp. The results are given for the three choices of the pairing interaction - the
isoscalar, the isovector, and the total pairing with a common strength parameter
value. For this nucleus, we obtain a more rotational spectrum but observe a flat
area of minima with similar RMS values of σ. The region of values suggesting
reasonable description of the experiment do not reach the pure-pairing side. Us-
ing only the isoscalar or the isovector part of the pairing interaction, we obtain
a spectrum where for pure pairing part of the degeneracy is lifted - either the 2+

2

or the 0+
2 state lies below the rest of the multiplet, respectively. The result for σ

when we use the isoscalar interaction or the isovector pairing only is comparable
with the one using the full pairing.

For the nucleus 20O (where only the identical-particle isovector mode is
present, thus G0 = 0), similar values for σ are obtained for almost all the val-
ues of the parameter x (see Figure 1(g)). Also, the slope of change is bigger
and the point of the best description shifts to the left towards a more pairing-
like spectrum (see the position of the blue arrow in Figure 1(h) compared to
the one in Figure 1(f). It is clear that complicated spectra observed in real nu-
clear systems are best reproduced by taking into account both the pairing and
quadrupole-quadrupole interactions.

120



Pairing-Quadrupole Connections in the Algebraic Shell Model Applied to ...Pairing-Quadrupole Connections in the Algebraic Shell Model Applied to ...

Figure 1. Results for the nuclei 20Ne and 20O with the Hamiltonians (19). (left) The
absolute deviation σ in MeV for the excitation spectrum in the ds shell, calculated in
full SU3 The white circles denote the position where σ is minimal. (right) Excitation
spectrum of the lowest-lying energies with the control parameter x varying from −1 to 1
along the black dashed line from the corresponding figure on the left. The labels in italic
and the dotted lines represent the experimental energies [15].

reproduced by taking into account both the pairing and quadrupole-quadrupole
interactions.

7

Figure 1. Results for the nuclei 20Ne and 20O with the Hamiltonians (19). (left) The
absolute deviation σ in MeV for the excitation spectrum in the ds shell, calculated in
full SU3 The white circles denote the position where σ is minimal. (right) Excitation
spectrum of the lowest-lying energies with the control parameter x varying from −1 to 1
along the black dashed line from the corresponding figure on the left. The labels in italic
and the dotted lines represent the experimental energies [15].
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3.2 Three-parameter results and the phase transitions

Further, we can separate the two pairing modes - the isoscalar and the isovector
one - and use a Hamiltonian (14). In this case, one has to introduce two control
parameters y and z, described in detail in [16]. These are defined as having
the following relation with the three strengths G0, G1 and χ of the Hamiltonian
(14): y = χ/(χ+G1), z = (χ+G1)/(χ+G0 +G1) and the scaling parameter
c = χ+G0 +G1. Using them, the Hamiltonian becomes

H = c(1− z)S†.S + c(1− y)zP †.P − cyzQ.Q. (21)

The ratio between the best-fit values for the parameters χ, G0 and G1 can be
ploted on a diagram resembling the Casten symmetry triangle, where each vertex
represents one of the modes in pure form. The two control parameters y and z
have the following meaning: an angle and a distance from the point of interest
to one of the sides of the triangle, respectively (see Figure 2 below).

The three nuclei in the study (18O, 18Ne, and 20O) have only one type of va-
lence particles (protons or neutrons), so a three-parameter investigation is done
only for the system 20Ne. The best three-parameter results in this case are ob-
tained for the values χ = 0.108 MeV,G0 = 0.29 MeV, andG1 = 0.29 MeV, i.e.
the addition of a third parameter does not change much the quality of description
of the experimental results.

We also point out that if for the RMS estimate we use only 10 of the ex-
perimental states, the improvement in the σ result going from 2 to 3 parameter
estimate is more pronounced. Also, in that case we obtain the following result
for the strengths of the three interactions: χ = 0.102 MeV, G0 = 0.04 MeV,
and G1 = 0.28 MeV. This suggests that the ratio between two pairing modes
changes and they are no longer equally present.

In Figure 2, the results obtained for all 4 nuclei in our study are illustrated.
The outcome for the nuclei 18O and 18Ne has been obtained as the best two-Pairing-Quadrupole Connections in the Algebraic Shell Model Applied to ...

Figure 2. A symmetry triangle that illustrates the dominance of one of the intearctions -
quadrupole-quadrupole, isoscalar pairing or isovector pairing. The coordinates of a point
of interest are y and z. The five circles show the results for the nuclei 18Ne, 18O, 20Ne,
and 20O.

20Ne has been done. The deviation from the experimental energy spectrum is
reduced once one goes from two-parameter to three-parameter description, re-
sult more clearly seen for the case of the 10 low-lying experimental states. In
that case we obtain the following result for the strengths of the three interac-
tions: χ = 0.102 MeV, G0 = 0.36 MeV, and G1 = 0.04 MeV. This suggests
that the ratio between the two pairing modes changes and they are no longer
equally present. We also observe that in the isoscalar and the isovector case the
degeneracy of the states 0+

2 , 0+
3 , 2+

2 , and 2+
3 is partially removed as is in the

experiment.
In principle, we can use a different statistics in the minimization proce-

dure, namely a modified root-mean-squared /RMS/ estimate of the form σ1 =√∑
i (Ei

Th − Ei
Exp)

2
/Ei

Exp
2
d ( per degree of freedom d ) with respect to the

two parameters G and χ of the residual interactions (19). Here, the experimen-
tal energies are also included to weigh each theory from experiment difference.
Then, the minimum is achieved at χ = 0.105 MeV and G = 0.22 MeV. In this
case, the state 2+

1 differs by only 4% from the experimental state whereas the σ
estimate gives a 16% discrepancy. The numbers for the 4+

1 state are 9% versus
25%, while for the 8+

1 state they are 16% and 26%, respectively. In conclusion,
the σ1 estimate favors a more accurate description ( i.e. lower percent differ-
ence ) in the lower-lying states. While the theoretical results lie closer to the
experimental energies, the E(4)/E(2) ratios become more poorly estimated.

4 Conclusion

On the basis of the algebraic reductions of the spatial part of the shell-model
algebra U(4Ω) through the dynamical symmetries defined by the microscopic
pairing algebras, containing pure isoscalar (T = 0, S = 1), pure isovector

9

Figure 2. A symmetry triangle that illustrates the dominance of one of the intearctions -
quadrupole-quadrupole, isoscalar pairing or isovector pairing. The coordinates of a point
of interest are y and z. The five circles show the results for the nuclei 18Ne, 18O, 20Ne,
and 20O.
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Figure 3. Comparison of the experimental and theoretical spectra obtained for 20Ne with
the Hamiltonians VPisc − χ

2
Q.Q, VPiv − χ

2
Q.Q, and VPisc + VPiv − χ

2
Q.Q. Below

each spectrum, the RMS value σ obtained has been written. The three-parameter result
has a slightly bigger σ value since the best values remain the same, while the degrees of
freedom are one less.

(T = 1, S = 0), total pairing interaction with both of them with equal strenghts
and Elliott’s SU(3) algebra, we elucidate the algebraic structure of an extended
Pairing-plus-Quadrupole Model, in the framework of the SU(3) scheme [6].
The four reduction chains appear as distinct dynamical symmetries of the shell-
model algebra. This allows us to study the complementarity and competitive ef-
fects of the quadrupole-quadrupole and pairing interactions on the energy spec-
tra of the nuclear systems. The theoretical results are compared with experimen-
tal energy spectra of the nuclei 18Ne, 18O, 20Ne, and 20O, from where the opti-
mal values of two and three parameters of the residual interactions are obtained.
A more accurate description of the interplay between the PQM’s interactions is
obtained in the three-parameter fit to the experiment.

A further and natural development of this model is its realization in more
than one shell. Some steps have already been done in this direction [5] but one
should be cautious with the choice of nuclei to be studied and the model spaces to
work in. The reason is that one has to deal with the center-of-mass effects [17]
that should be addressed appropriately since they can be severe. A favorable
choice for such calculations would be the s1/2d3/2 + f7/2 or s1/2d3/2 + fp
(which realizes as pseudo − p + f7/2 or pseudo − p + fp in SU(3) language)
model spaces. This implies the systems of interest to be nuclei like the four-
particle N = Z system 32S or the eight-particle one 36Ar.
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Figure 3. Comparison of the experimental and theoretical spectra obtained for 20Ne with
the Hamiltonians VPisc − χ

2
Q.Q, VPiv − χ

2
Q.Q, and VPisc + VPiv − χ

2
Q.Q. Below each

spectrum, the RMS value σ obtained has been written. The three-parameter result has
a slightly bigger σ value since the best values remain the same, while the degrees of
freedom are one less.

parameter estimate using the Hamiltonian with the isovector pairing only. The
cases of no isoscalar pairing involved (which happens when one type of valence
particles is present in the system) lie along the SOT (5)-SU(3) line. Moreover,
the nucleus expected to be more collective 20O (the experimental energy ratio
E4/E2(exp) = 2.13) turns out to be positioned closer to the SOT (5)×SOS(3)
vertex of the triangle. The theoretical result for the ratio is a reasonable one
(E4/E2(th) = 2.14). The result for the nuclei 18Ne (E4/E2(exp) = 1.79)
and 18O (E4/E2(exp) = 1.79) are E4/E2(th) = 2.53 and E4/E2(th) = 2.77
which is related to their position closer to the SU(3) vertex in the figure. Only
the 20Ne (E4/E2(exp) = 2.6) result for the parameters lies inside the triangle
and the ratio obtained with the best 3-parameter estimate is E4/E2(th) = 2.86.
The result, obtained for the 10 experimental states, namely the low-lying states
0+

2 , 0
+
3 , 2

+
1 , 2

+
2 , 2

+
3 , 3

+
1 , 4

+
1 , 4

+
2 , 6

+
1 , 8

+
1 , is also shown in the figure and is posi-

tioned closer to the vertex of the isoscalar pairing.
Finally, in Figure 3, a comparison between excitation spectra calculated for

20Ne has been done. The deviation from the experimental energy spectrum is
reduced once one goes from two-parameter to three-parameter description, re-
sult more clearly seen for the case of the 10 low-lying experimental states. In
that case we obtain the following result for the strengths of the three interac-
tions: χ = 0.102 MeV, G0 = 0.36 MeV, and G1 = 0.04 MeV. This suggests
that the ratio between the two pairing modes changes and they are no longer
equally present. We also observe that in the isoscalar and the isovector case the
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degeneracy of the states 0+
2 , 0+

3 , 2+
2 , and 2+

3 is partially removed as is in the
experiment.

In principle, we can use a different statistics in the minimization proce-
dure, namely a modified root-mean-squared /RMS/ estimate of the form σ1 =√∑

i (EiTh − EiExp)
2
/EiExp

2
d (per degree of freedom d) with respect to the two

parameters G and χ of the residual interactions (19). Here, the experimental en-
ergies are also included to weigh each theory from experiment difference. Then,
the minimum is achieved at χ = 0.105 MeV and G = 0.22 MeV. In this case,
the state 2+

1 differs by only 4% from the experimental state whereas the σ esti-
mate gives a 16% discrepancy. The numbers for the 4+

1 state are 9% versus 25%,
while for the 8+

1 state they are 16% and 26%, respectively. In conclusion, the
σ1 estimate favors a more accurate description (i.e. lower percent difference) in
the lower-lying states. While the theoretical results lie closer to the experimental
energies, the E(4)/E(2) ratios become more poorly estimated.

4 Conclusion

On the basis of the algebraic reductions of the spatial part of the shell-model
algebra U(4Ω) through the dynamical symmetries defined by the microscopic
pairing algebras, containing pure isoscalar (T = 0, S = 1), pure isovector
(T = 1, S = 0), total pairing interaction with both of them with equal strenghts
and Elliott’s SU(3) algebra, we elucidate the algebraic structure of an extended
Pairing-plus-Quadrupole Model, in the framework of the SU(3) scheme [6].
The four reduction chains appear as distinct dynamical symmetries of the shell-
model algebra. This allows us to study the complementarity and competitive ef-
fects of the quadrupole-quadrupole and pairing interactions on the energy spec-
tra of the nuclear systems. The theoretical results are compared with experimen-
tal energy spectra of the nuclei 18Ne, 18O, 20Ne, and 20O, from where the opti-
mal values of two and three parameters of the residual interactions are obtained.
A more accurate description of the interplay between the PQM’s interactions is
obtained in the three-parameter fit to the experiment.

A further and natural development of this model is its realization in more
than one shell. Some steps have already been done in this direction [5] but one
should be cautious with the choice of nuclei to be studied and the model spaces to
work in. The reason is that one has to deal with the center-of-mass effects [17]
that should be addressed appropriately since they can be severe. A favorable
choice for such calculations would be the s1/2d3/2 + f7/2 or s1/2d3/2 + fp
(which realizes as pseudo− p+ f7/2 or pseudo− p+ fp in SU(3) language)
model spaces. This implies the systems of interest to be nuclei like the four-
particle N = Z system 32S or the eight-particle one 36Ar.
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