Neutrino Mass and Forbidden Beta Decays

R. Dvornický^{1,2}, D. Štefánik², F. Šimkovic^{2,3}

- ¹Dzhelepov Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow region, Russia
- ²Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK–842 15 Bratislava, Slovakia
- ³Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow region, Russia

The most sensitive direct neutrino mass search is provided by a very precise measurement of the electron energy spectrum in single β decays close to the endpoint. Recent experiment KATRIN uses the super-allowed β decay of tritium [1]. A possibility to use the first, second, third unique forbidden β decays and the first non-unique forbidden β decay for the determination of the absolute mass of neutrinos is addressed. For selected nuclei we present the theoretical electron energy spectra for these forbidden β transitions. Our calculations are based on the exact Dirac wave functions of the electron with effects of finite nuclear size and the electron screening taken into account [2]. Our goal is to define the Kurie functions for these forbidden β decays in such a way that they are linear near the endpoint in the limit of massless neutrinos like the Kurie function of the super-allowed β decay of tritium [3,4].

References

- R. Dvornický, K. Muto, F. Šimkovic, and A. Fässler, *Phys. Rev. C* 83 (2011) 045502.
- [2] D. Štefánik, R. Dvornický, F. Šimkovic, and P. Vogel, *Phys. Rev. C* 92 (2015) 055502.
- [3] R. Dvornický, and F. Šimkovic, AIP Conf. Proc. 1686 020009 (2015).
- [4] R. Dvornický, and F. Šimkovic, Acta Phys. Polonica B, Proc. Suppl. 8 (2015) 3.