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Abstract. We discuss a dissipative extension of Time Dependent Hartree Fock
(TDHF), based on a stochastic extension of TDHF. We outline the method and
present a few examples of applications in the context of electronic systems. The
proposed framework is generic and can be applied to any system which can be
described on the basis of a mean field theory as a good starting basis.

1 Introduction

The description of dissipative effects in finite quantum systems has a long his-
tory [1], which concerns several fields in physics and chemistry. The question
was unfortunately never settled in a convenient manner and thus remains an open
field of research. The interest in this question was recently renewed following
studies on clusters and molecules excited by intense laser fields [2–4]. But the
point is also considered for ballistic electron transport in nano systems [5], and
in the case of trapped Fermi gases [6] as well. The molecular case has recently
driven numerous studies [4, 7], because of the more and more detailed analysis
of electronic emission (energy-, angular-resolved distributions...). The question
was also deeply explored in nuclear physics in particular in nuclear fission and
nuclear collisions [8]. In nuclear collisions, for example, the projectile kinetic
energy is redistributed into thermal energy of the compound target+projectile
system. This may possibly lead to the formation of truly “hot nuclei” subse-
quently deexciting via thermal emission and/or fragmentation. This case clearly
points out the importance of “elementary collisional events” between system’s
constituents. We will refer to these as “collisional correlations”, in relation to
Fermi liquid theory [9] with incoherent reduction of two-body correlations to
two-Fermion collisions.

Nuclear theory devoted major efforts since three decades to address the ques-
tion of hot nuclei with a stronghold on semi-classical methods [8,10,11], some-
what similarly to the plasma physics strategy [12]. Molecular Dynamics ap-
proaches combining quantum features with a semi-classical treatment of dy-
namical correlations [13, 14] were also developed and have been heavily used
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so far. But no complete practical quantum approach could be proposed in the
field, in spite of numerous formal investigations [8, 15, 16]. The case of clus-
ters and molecules was considered more recently, first, again, at semi classical
level [17, 18], in a way very similar to the nuclear case. These approaches are,
nevertheless, bound to simple metal clusters with soft binding, and even in this
case, exhibit clear deficiencies because of the importance of resonance effects,
only partly addressed at the semi classical level [19]. Furthermore (semi) clas-
sical approaches are primarily derived for high excitations such as in the case of
very intense laser pulses [2]. In the case of moderate energy deposits quantum
effects cannot be neglected. The system may be highly perturbed (far away from
any equilibrium) system, but with moderate remaining excitation energy because
a sizeable part of the excitation may have been released by ionization. This kind
of (common) situation is far beyond the reach of semi-classical methods and
thus requires a dedicated treatment.

There exist a few attempts, for example by treating dynamical correlations
semi-classically on top of quantum mean field [20]. There are also fully quan-
tum mechanical treatments in schematic model systems [21] as well as time-
dependent configuration-interaction (TD-CI) calculations [22]. But these elab-
orate approaches are limited to low excitations and small systems. A robust
quantum theory addressing the regime of moderate to high excitation energies
is thus still missing. The present paper proposes a way to attack these questions
by recurring to a stochastic extension of mean field theories. We wall consider
here applications to irradiated clusters and molecules as examples but the formal
development underlying these applications can be applied to a wider variety of
physical systems under non-linear excitations.

2 Outline of Theory

2.1 Time dependent mean field, TDHF

Time-Dependent Density Functional Theory (TDDFT) provides a robust and
versatile access to the dynamics of irradiated clusters and molecules, especially
at the effective mean field level of the widely used Time-Dependent Local-
Density Approximation (TDLDA) [23]. But TDLDA misses by construction
dissipative effects from electron-electron collisions, which limits its range of
applicability to moderate excitations. In the electronic context Time Dependent
Hartree Fock (TDHF) refers to a mean field theory in which exchange is treated
exactly, at variance with TDLDA which corresponds to a Hartree theory with
approximate (local) exchange. In the nuclear case TDHF usually refers to cases
with effective density dependent hamiltonians and again approximate exchange,
which is formally very similar to the electronic case. For the sake of simplicity
we shall use the acronym TDHF to label the mean field theory on which we build
up dynamical correlations.
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For formal discussions it is worth re-expressing mean field dynamics in
terms of the one-body density matrix ρ̂. whose natural orbitals representation
reads

ρ̂ =

∞∑

α=1

|φα〉Wα〈φα| (1)

where the Wα are the occupation numbers in this basis (eigenvalues of the den-
sity matrix). Mean field propagation can then be written as

i∂tρ̂ =
[
ĥ[%], ρ̂

]
(2)

with the Hamiltonian ĥ[%] computed from the diagonal part % of the density
matrix ρ̂. The occupation numbers Wα are time independent at mean field level.

2.2 Standard stochastic TDHF, STDHF

A natural evolution of TDHF towards the inclusion of dissipative effects is to
complement it by a collision integral, following a hierarchy matrix strategy [24].
Still, the standard truncation schemes to attain a collision term miss fluctuations
which are considered as corresponding to higher order effects. However accord-
ing to the fluctuation-dissipation theorem, fluctuations scale with excitation en-
ergy so that they should be included in a concomitant way to dissipative features.
While they can be overlooked at moderate excitation energy they should prob-
ably be accounted for at higher excitations. A possible solution is to consider
more elaborate approaches including a Langevin treatment through a stochastic
collision term [25, 26], which leads to stochastic kinetic equations which alto-
gether leads to a Boltzmann equation complemented by a stochastic collision
term [25,26]. This originally classical approach can be extended to the quantum
domain but leads to extremely involved equations, hardly solvable in practice.
Some semi-classical approximations thereof were nevertheless used in nuclear
dynamics [8, 27, 28].

An alternative quantum mechanical approach consists in directly extending
TDHF in a stochastic manner [16] . The formalism can then be formally re-
duced to a quantum stochastic kinetic equation. The method, Stochastic Time-
Dependent Hartree Fock (STDHF), nevertheless provides a formally simple frame-
work for true quantum approaches. Dynamics is then represented by an ensem-
ble of pure mean field states propagated in parallel, on top of which a perturab-
tive (on the fly) account of collisional correlations is evaluated. Both the formal-
ism and its realization are simple, except for computational cost mostly because
of the necessary large size of the ensemble to reach statistically reliable esti-
mates. Direct applications in realistic systems are thus not yet possible. Only
model systems in 1D could be computed as proof of principle [29,30]. The next
step, which we discuss briefly here, is to simplify STDHF a bit in order to ap-
ply it to realistic 3D cases. Test cases will be presented here in 1D in order to
comply with STDHF computations, though.
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Let us first briefly remind the STDHF frame. The idea is to step from one
mean field to an ensemble thereof which, in terms of associated Slater states
|Φα〉 amounts to step from one to a set of Slater states : |Φ〉 → {|Φα〉, α =
1, ...N} where N is the size of the stochastic ensemble. Each member of the
ensemble is propagated according to its mean field during a time interval τ long
enough to allow a sufficient building up of correlations, but not too much, in
order to allow a pertubative treatment. After τ , correlations are evaluated per-
turbatively (Fermi Golden rule) for each member α of the ensemble around the
time evolved state |Φα〉. We practically restrict correlations to 2p2h excitations
around the mean field and assume loss of coherence between these various exci-
tations. This practically delivers a correlated density matrix D̂α =

∑
κ wακρ̂

α
κ

where the summation runs over all energy accessible (Fermi Golden rule pre-
serves total energy) 2p2h density matrices ρ̂κ built on top of ρ̂α = |Φα〉〈Φα|.
Even for a single trajectory α such a procedure rapidly diverges. The way out
is to make a stochastic treatment and sample one ρ̂ακ out of the generated set
according to the weights wακ. This delivers a new Slater state (any 2p2h excita-
tion on the original Slater state delivers a Slater state) which is again propagated
according to its mean field. The procedure is repeated for each member of the
ensemble which thus evolve independently from each other, each of them de-
veloping its own mean field. The procedure can be cast in a pictorial form as
follows:





|Φα(0)〉 TDHF−→ |Φ̃α〉︸︷︷︸
jumps
↓

{|Φ̃ακ〉, wακ}︸ ︷︷ ︸
Sampling
↓

|Φα(τ)〉 = |Φ̃ακ0
〉 TDHF−→ |Φ̃α〉︸︷︷︸

...

...

t=0 τ 2τ ...





α
=

1,
..
.N

With the thus constructed ensemble one can compute physical observables as
statistical averages. For example one body observables can be accessed from
the (correlated) one-body density matrix which reads

ρ(1; 1′) =
1

N
∑

α

ρ(α)(1; 1′) (3)
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2.3 From STDHF to average STDHF, ASTDHF

Stochastic TDHF is appealing. It integrates both dissipative effects (via colli-
sional correlations) and associated fluctuations through the stochastic ensemble.
It thus covers the expected dynamical behaviors in the dissipative regime. It
can be furthermore shown that STDHF can be properly reduced to a stochastic
kinetic equation [16]. Nevertheless, because of the involved computational ef-
fort it requires, it will mostly provide a benchmark for other, simpler, theories,
after its validation in simple 1D model systems of covalent molecules [29, 30].
The major issue concerns the stochastic ensemble representation which requires
hundreds of events for proper treatment. Each event carries its own mean field
which at the end represents a major computational effort. As a consequence a
mere STDHF calculation represents hundreds of times the cost of a TDHF one.
Furthermore in the case of moderate excitation energies, transition probabilities
become smaller, whence an increased effort to properly sample them. This is
the regime, in turn, where fluctuations are expected to remain moderate. There
is thus an interesting direction to explore here, which consists in considering a
STDHF propagation with a common (averaged) mean field. We will label this
simplification by the acronym Average STDHF, ASTDHF.

The new approach, ASTDHF, is intuitively simple to figure out, although it
requires some caution in the implementation. We shall thus not enter technical
detail here and remain at a simple level level of presentation providing a taste of
how ASTDHF is constructed. For the sake of simplicity we present it in direct
relation to STDHF in the following table:

STDHF ASTDHF
Ensemble of pure states One mixed state
Ensemble of mean fields One mean field
{ρ̂α, ĥα[ρ̂α]}α=1,...N ρ̂, ĥ[ρ̂]

ρ̂α =
∑N
i=1 |ϕαi 〉〈ϕαi | ρ̂ =

∑∞
i=1 ni|ϕi〉〈ϕi|

Correlation in sampling Correlations in occupation numbers ni
{ρ̂α, α = 1, ...N} {ni, i = 1, ...∞}

Here N labels the number of particles in the system (number of occupied states,
occupation 1). The single particle wave functions are labeled by ϕ with the in-
dex i indicating the label of the single particle level. In STDHF they are extra
indexed by α to label the member of the STDHF ensemble. In ASTDHF the lat-
ter index vanishes pointing out the fact that one deals with a single set of single
particle wave functions, and accordingly a single mean field. The above picture
is quite schematic and requires some technicalities to be worked out in detail.
The key issue of course is the evaluation of the occupation numbers ni. The way
to increment the latters is the following. We propagate the mixed ASTDHF state
over a time interval τ similar to STDHF. The mixed state possesses fractional
occupation numbers ni which are preserved during this mean field propagation
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over τ . In order to use STDHF strategy we need to reconstitute, at time τ , an
ensemble of pure states, in the spirit of STDHF. This is achieved by sampling
the distribution of fractional occupation numbers by an ensemble of pure states
(occupation numbers 0 or 1), of course preserving the total energy in the process.
For each member of this ensemble one now computes perturbations exactly the
same way as in STDHF but, instead of sampling the obtained correlations, we
add them up explicitly, for each member of the ensemble and pile up the contri-
butions of each member. This produces a new one body density matrix whose
eigenvalues are the new (updated by STDHF correlations) occupation numbers
ni associated to each natural orbital building up the one-body density matrix.
Mean field propagation starts again with this new expression of the mixed state.

2.4 Extended TDHF, ETDHF

As mentioned above STDHF may be reduced to a stochastic kinetic equation.
The simpler version thereof is the corresponding quantum kinetic equation (with-
out stochastic collision term) which nevertheless contains as collision term Î[ρ̂] a
complicated operator which can hardly be solved in practice. ASTDHF provides
an indirect way to resolve this problem and a clearcut derivation of the relation
between ASTDHF and a quantum kinetic equation is still to be developed. In
the mean time one can consider a simpler version of the collision term obtained
by assuming that the one-body density matrix entering Î[ρ̂] remains diagonal, of
the form Eq. (1), with time-dependent weights Wα. The effect of the collision
integral can then be written as a rate equation for the Wα

dWα

dt
∼
∑

β

∑

γ

∑

δ

|Vαβγδ|2 [(1−Wα)(1−Wβ)WγWδ

−WαWβ(1−Wγ)(1−Wδ)]δ (εα + εβ − εγ − εδ) (4)

where the εi label s.p. energies. The standard acronym for this approximation
is Extended TDHF (ETDHF) and was in particular explored in nuclear physics
[15]. It is thus also interesting to test this oversimplified picture and compare it
to STDHF and ASTDHF.

3 Illustrative Results

As already indicated we shall perform tests in 1D in order to be able to use
STDHF as benchmark. We thus consider a molecular 1D model system. The
setup is similar to the one in [29, 30]. We mock up a 1D molecular/cluster
system by a mean field Hamiltonian (in x representation, using ~ = 1)

ĥα = − ∆

2m
+ Vext(x) + λ

(
%(α)(x)

)σ
(5)

The external potential Vext(x) is a Woods-Saxon profile Vext(x) = V0/(1 +
exp((x − x0)/a)) with V0 = −68 eV, x0 = 15 a0, a = 2 a0. It is com-
plemented by a density dependent self constant term mocking up and effective
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Figure 1. Comparison of time evolution of occupation numbers in STDHF (left panel)
and ASTDHF (right panel) after a particle-hole excitation delivering an excitation energy
of 26.5 eV. Ground state is full occupation below vertical dashed line. Initial excitation
corresponds to grey shaded areas. Occupation numbers are shown at a few time steps.

interaction and taken as simple power of the local density, with λ = 68 Ry.a2
0

and σ = 2. The potential is complemented by a confining harmonic oscillator to
ensure soft reflecting boundary conditions. This extra confining potential allows
to fully eliminate ionization and focus the discussion on thermal effects. The
residual interaction Vres used for computing correlations in the Fermi Golden
rule is taken as a zero range term with intensity 17.7 eV.a0. The set of parame-
ters has been tuned to reproduce a typical molecular setup with energies in the
Ry range, see [29, 30] for details.

A first result is shown in Figure 1 displaying snapshots of occupation num-
bers and comparing STDHF to ASTDHF. In ASTDHF the occupation numbers
are the ni advocated above. In STDHF they are obtained by diagonalizing the
ensemble one-body matrix Eq. (3). The initial excitation is delivered via a
particle-hole excitation providing 26.5 eV excitation energy. This corresponds
to drilling a hole deep in the sequence of occupied states as can be seen from the
figure. We compare occupation distributions as a function of time and see that
the initial hole is progressively filled while levels above Fermi energy are correl-
atively filled. Beyond about 100 fs both calculations have attained a Fermi-like
shape of the occupation numbers. Furthermore, as far as one can estimate it from
such a plot, STDHF and ASTDHF seem to behave in a very similar manner with
relaxation taking place at a similar pace. This is a good indication that ASTDHF
delivers a reasonable approximation to STDHF.

In order to quantify this way to thermal equilibrium we compute the one-
body entropy

S = −kB
∑

i

[νiLogνi + (1− νi)Log(1− νi)] (6)

where kB is Boltzman constant. The notation νi for the single particle occupa-
tion numbers covers various quantities, depending on the approximation. For
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Figure 2. Comparison of time evolution of entropy S (in Boltzmann constant unit kB)
computed with STDHF, ASTDHF and ETDHF approaches, for two excitation energies
E∗ as indicated. The shaded areas about the STDHF curves are the error bars from the
fluctuations within the STDHF ensemble.For ASTDHF and ETDHF the shaded areas cor-
respond to an estimate of the impact of numerical parameters used in the computations.

STDHF they label the eigenvalues of the ensemble one-body matrix Eq. (3);
for ASTDHF they correspond to the values ni discussed above and for ETDHF
they correspond to the Wα. The one-body entropy is plotted as function of time
for two examples in Figure 2, comparing ASTDHF and ETDHF to STDHF. Ini-
tial excitation is again delivered by particle-hole excitations. At low excitation
energy the three approaches deliver very similar results both in terms of asymp-
totic values and relaxation rate. The result is interesting as it shows that ETDHF,
which is technically an order of magnitude simpler than ASTDHF (but only
about a factor 2 quicker than ASTDHF computationally speaking, and typically
2 orders of magnitude cheaper than STDHF), performs in a similar manner in
that case. The higher excitation case in turn delivers a different message. While
again ASTDHF very nicely matches STDHF, ETDHF poorly fails even in terms
of asymptotic value. This clearly shows the deficiency of ETDHF which can
be attributed to the imposed diagonal approximation. The point can be cross
checked by imposing, in the course of the ASTDHF step, a diagonal representa-
tion. In that case the result falls somewhat in between full ASTDHF and ETDHF,
hinting again at the importance of off diagonal terms in the one-body density
matrix.

4 Conclusions and Perspectives

We have presented some extension of TDHF in order to address dissipative dy-
namics in finite fermion systems, taking as example small clusters and molecules.
We have outlined the Stochastic TDHF method which provides a sound exten-
sion of TDHF accounting for both dissipation and fluctuations, but which is too
involved for realistic computations. It can hence only serve as benchmark in
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model cases. We thus have introduced two simplifications. The first one, coined
ASTDHF, provides a direct simplification of STDHF by imposing a common
mean field to all members of the stochastic ensemble of STDHF. ASTDHF pro-
vides a sound approximation to STDHF except for the account of fluctuations
missing by construction. All average quantities computed do very well match
with STDHF. The oversimplified ETDHF provides a very simple approximation
allowing to directly evolve occupation numbers according to a rate equation.
The method surprisingly works well at low excitations but fail at higher excita-
tion. All in all, ASTDHF seems to provide the best compromise in accuracy and
cost and should be further studied and applied to realistic 3D cases. Work along
that line is in progress.
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