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Abstract. The Coherent Density Fluctuation Model (CDFM) is used to cal-
culate the volume (aVA) and surface (aSA) contributions (and their ratio) to the
nuclear symmetry energy (NSE). Starting with the global values for parameters
for infinite nuclear matter, our approach makes it possible to derive their cor-
responding values in finite nuclei. Two energy-density functionals (EDF) for
nuclear matter, those of Brueckner and Skyrme are used. The weight function
in CDFM is calculated using the proton and neutron densities from the self-
consistent HF+BCS method with Skyrme interactions. The obtained values of
aVA , aSA, and their ratio for the Ni, Sn, and Pb isotopic chains, as well as iso-
topic sensitivity are presented and discussed. The results are compared with
those of other theoretical models, as well as with available experimental data
obtained from analyses of nuclear properties, such as binding energies, neutron-
skin thicknesses, excitation energies to isobaric analog states and others.

1 Introduction

The nuclear matter symmetry energy that characterizes the isospin-dependent
part of the equation of state of asymmetric nuclear matter (ANM) is impor-
tant for studies of the NSE in finite nuclei. The latter is not a directly mea-
surable quantity and is extracted indirectly from observables that are related
to it (e.g., [1]). The NSE at saturation density has been often obtained by fit-
ting ground state masses with various versions of the liquid-drop mass formula
within the liquid-drop models (LDM) [2, 3]. In our works [4–6] the NSE has
been calculated within the CDFM [7,8] using the Brueckner EDF [9] by making
a transition from the symmetry energy of nuclear matter to that of finite nuclei.

In 1947 Feenberg [10] pointed out that the surface energy should contain a
symmetry energy contribution as a consequence of the failure of the nuclear sat-
uration at the edge of the nucleus and that the volume saturation energy also has
a symmetry energy term. Cameron in 1957 [11] (see also Bethe [12]) suggested
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a revised mass formula in which the volume energy was expressed as a sum of
two contributions, the volume saturation energy proportional to the mass num-
ber A and a volume symmetry energy assumed proportional to (A−2Z)2/A. In
1958 Green [13] estimated the values of the volume and surface components of
the corresponding contributions to the symmetry energy. Myers and Swiatecki
in 1966 [2] admitted that the ratio between the mentioned coefficients must be
equal to the ratio between the surface and volume coefficients of the correspond-
ing components of the mass formula.

In the present work (see also Ref. [14]) the CDFM is used to calculate the
volume and surface components of the NSE and their ratio using the Brueckner
as well as the Skyrme (e.g., [15]) EDF. The results are compared with results
of other theoretical works as well as with available experimental data extracted
from binding energies, neutron-skin thicknesses and excitation energies to iso-
baric analog states (IAS).

In Sect. II we present the main relationships for the NSE and its volume and
surface components. Section III contains the CDFM formalism and provides a
way to calculate the mentioned quantities. The main conclusions of the study
are given in Sect. IV.

2 Relationships Concerning the Volume and Surface Contributions
to Nuclear Symmetry Energy

The expression for the energy per particle has the form:

Ē =
E

A
= −c1 + c2

1

A1/3
+ c′3

(
N − Z
A

)2

+
1

A
[Coulomb term + shell corrections], (1)

where the first three terms in the right-hand side of Eq. (1) correspond to the
volume, surface, and symmetry components. The latter can be expressed by its
volume and surface contributions by (see e.g., Ref. [12])

(N − Z)2

A
(c3 − c4A−1/3). (2)

Estimations of c3 and c4 have been given in Ref. [13], while in Ref. [2] it has
been admitted that the ratio c4/c3 can be taken to be equal to the ratio c2/c1 [12]:

c4
c3

=
c2
c1

= χ (3)

with χ = 1.1838 from [2] and χ = 1.14 from [12]. By definition the NSE
coefficient is

s =
1

2

∂2Ē

∂α2

∣∣∣∣
α=0

, (4)
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where
α ≡ N − Z

A
. (5)

It follows from Eqs. (4), (2) and (3) that

s = c′3 = c3 −
c4
A1/3

= c3

(
1− χ

A1/3

)
. (6)

Thus

c3 =
s

1− χ
A1/3

, c4 = χ

(
s

1− χ
A1/3

)
. (7)

In modern times Danielewicz et al. (e.g., [16, 17] and references therein)
proposed the following expression for the NSE:

Esym =
aa(A)

A
(N − Z)2, (8)

where the A-dependent coefficient aa(A) is expressed by means of the volume
(aVA) and surface (aSA) coefficients by the form (see also [18]):

aa(A) =
aVA[

1 +A−1/3 a
V
A

aSA

] . (9)

It has been shown in the local density approximation that the ratio aVA/a
S
A can

be expressed by means of the symmetry energy dependence on the density s(ρ)
[16, 19, 20]:

aVA
aSA

=
3

r0

∫
dr
ρ(r)

ρ0

{
s(ρ0)

s[ρ(r)]
− 1

}
, (10)

where ρ(r) is the half-infinite nuclear matter density, ρ0 is the nuclear mat-
ter equilibrium density and r0 is the radius of the nuclear volume per nucleon
4πr3

0/3 = 1/ρ0.
In the Danielewicz’s approximation only the symmetry energy of a finite nu-

cleus aa(A) has a mass dependence, while aVA , aSA, and their ratio aVA/a
S
A are

A-independent quantities. The values of aVA and aSA differ for various Skyrme
interactions in wide intervals. At the same time, as shown in [16], a combina-
tion of empirical data on skin sizes and masses of nuclei constrains the vol-
ume symmetry parameter to 27 ≤ aVA ≤ 31 MeV and the ratio aVA/a

S
A to

2.0 ≤ aVA/aSA ≤ 2.8.

3 The CDFM. Results of Calculations of NSE and Its Volume and
Surface Contributions

In the CDFM [7, 8] the one-body density matrix ρ(r, r′) of the nucleus is a
coherent superposition of the one-body density matrices ρx(r, r′) for spherical
“pieces” of nuclear matter with radius x (so called “fluctons”) with densities
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ρx(r) = ρ0(x)Θ(x − |r|) and ρ0(x) = 3A/4πx3. The Fermi momentum of
such a formation is kF (x) = [3π2ρ0(x)/2]1/3. The nuclear density distribution
in the CDFM has the form:

ρ(r) =

∫ ∞

0

dx|F(x)|2ρ0(x)Θ(x− |r|), (11)

where the weight function |F(x)|2 in the case of monotonically decreasing local
density (dρ/dr ≤ 0) can be obtained using a known density of a given nucleus:

|F(x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

(12)

with the normalization
∫∞

0
dx|F(x)|2 = 1.

In the CDFM the symmetry energy s for finite nuclei is obtained [4–6] to be
an infinite superposition of the corresponding ANM symmetry energy weighted
by |F(x)|2:

s =

∫ ∞

0

dx|F(x)|2sANM (x). (13)

In our work we use for the matrix element V (x) of the nuclear Hamiltonian
the corresponding ANM energy from the Brueckner and Skyrme EDF’s. The
weight function |F(x)|2 from Eq. (12) is calculated by means of proton and
neutron density distributions obtained from the self-consistent HF+BCS method
from Ref. [21] with density-dependent Skyrme interactions [22] and pairing cor-
relations.

Here we note that the coefficient aa(A) [Eqs. (8) and (9)], as expected, can
be represented approximately at large A (at least for A ≥ 27) (e.g., Refs. [16,
17, 19, 20] in the form of Eq. (2):

aa(A) =
aVA[

1 +A−1/3 a
V
A

aSA

] ' c3 −
c4
A1/3

(14)

that corresponds to Eq. (6), if c3 = aVA and c4 = (aVA)2/aSA.
Using as a base Eq. (10), we develop in the CDFM another approach to cal-

culate aVA/a
S
A, as well as aVA and aSA. Our motivation is that numerous analyses

of the volume and surface components of the NSE using a wide range of data
on the binding energies, neutron-skin thicknesses and excitation energies to IAS
give estimations of these quantities as functions of the mass number A (e.g.,
Refs. [3, 20, 23–27]) that change in some intervals for different regions of nu-
clei. In the CDFM we take nuclear matter values of the parameters to deduce
their values in finite nuclei (using the self-consistently calculated nuclear den-
sity) which become dependent on the considered nucleus. For this purpose, we
start from Eq. (10) but in it we replace the density ρ(r) for the half-infinite nu-
clear matter in the integrand by the density distribution of finite nucleus. Later,
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using Eq. (11) we obtain approximately an expression that allows us to calculate
the ratio aVA/a

S
A. It has the form:

aVA
aSA

=
3

r0ρ0

∫ ∞

0

dx|F(x)|2xρ0(x)

{
s(ρ0)

s[ρ0(x)]
− 1

}
. (15)

The approximations made in the CDFM lead to one-dimensional integral over
x, the latter being the radius of the “flucton” that is perpendicular to the nuclear
surface. Here we would like to emphasize that in contrast to Eq. (10), in Eq. (15)
we use the finite nuclei densities to calculate the weight function |F(x)|2. In
Eq. (15) s(ρ0) = sANM (ρ0) and the quantity s[ρ0(x)] = sANM [ρ0(x)] is the
NSE within the chosen approach for the EDF. From Eqs. (12) and (13) we obtain
the CDFM value for the NSE

s ≡ aa(A). (16)

Let denote by

κ ≡ aVA
aSA

(17)

that can be calculated using Eq. (15). Then it follows from Eq. (9):

s =
aVA

1 +A−1/3κ
. (18)

Finally, as a next step we obtain from Eqs. (16)-(18) (having calculated within
the CDFM the values of s and κ) the expressions from which we can estimate
the values of aVA and aSA separately:

aVA = s(1 +A−1/3κ), (19)

aSA =
s

κ
(1 +A−1/3κ). (20)

In our work we performed calculations of aVA/a
S
A, aVA and aSA (as well as of

s) for the Ni, Sn and Pb isotopic chains. In Figure 1 is presented, as an example,
the ratio κ as a function of A calculated using SLy4, SGII, and SkIII forces in
HF+BCS method in the case of the Brueckner EDF. Our results for κ in Ni,
Sn, and Pb chains are within the range 2.10 ≤ κ ≤ 2.90 that is similar to the
estimations obtained by Danielewicz et al. from a wide range of available data
on the already mentioned nuclear quantities. The ranges of the published values
of the ratio κ extracted from nuclear properties and presented in Ref. [20] are:
2.6 ≤ κ ≤ 3.0 from IAS and skins [28], 2.0 ≤ κ ≤ 2.8 from masses and
skins [16], and 1.6 ≤ κ ≤ 2.0 from the analyses in Ref. [20] of masses and
skins. As can be seen the empirical ranges are in a good agreement with our
results.

As can be seen in Figure 1 there exists a “kink” in the curve of κ ≡ aVA/a
S
A

as a function of A for the double-magic 78Ni nucleus. Such a “kink” exists also
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Figure 1. The ratio κ = aVA/a
S
A as a function of A for the isotopic chain of Ni. The

SLy4 (solid line), SGII (dashed line), and Sk3 (dotted line) forces have been used in the
HF+BCS calculations of the densities in the case of Brueckner EDF.

for the double-magic 132Sn nucleus. Here we would like to note that the origin
of the “kinks” is in the different behavior of the density distributions ρ(r) for
given isotopes. Namely the derivative of ρ(r) determines the weight function
|F(x)|2 [Eq. (12)] that takes part in the integrand of the integral in Eq. (15)
giving the ratio κ ≡ aVA/a

S
A. The peculiarities of ρ(r) for the closed shells lead

to the existence of “kinks”. In the case of Pb isotopic chain such “kinks” do not
exist and this reflects the smooth behavior without “kinks” of s(A) and related
quantities for the Pb isotopic chain.

In Figure 2 are presented aVA and aSA as functions of A for the Sn chain in
the case of the Brueckner EDF. The CDFM results for aVA in the three chains (of
Ni, Sn and Pb) are between 41.5 and 43 MeV, while for aSA they are between 14
and 20 MeV. These values are somewhat larger than those from other references
given above. The differences are due mainly to the somewhat larger values of
the NSE (s) for finite nuclei obtained within the CDFM using the Brueckner
functional, because our values for the component κ = aVA/a

S
A (that are between

2.1 and 2.9) are in the range obtained by other authors. Our results in this case
can be compared with those obtained e.g., in Refs. [3, 16, 17, 19, 26–28] that are
in the region 27 ≤ aVA ≤ 35 MeV and for aSA they are between 8.5 and 11.3
MeV.

We would like to note that the same peculiarities (as for the ratio κ ≡
aVA/a

S
A), namely “kinks”, appear in the cases of aVA and aSA as functions of the

mass number A. In Figure 2(a) a “kink” appears for aVA(A) not only for the
double-magic 132Sn, but also for the semi-magic 140Sn nucleus. The latter is
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Figure 2. The values of aVA (a) and aSA (b) as functions of A for the isotopic chain of Sn.
The SLy4 (solid line), SGII (dashed line), and Sk3 (dotted line) forces have been used in
the HF+BCS calculations of the densities in the case of Brueckner EDF.

related to the closed 2f7/2 subshell for neutrons. As can be seen from Eqs. (19)
and (20), the reason for “kinks” in the separate coefficients as functions of A
is twofold. One of them is the already mentioned reason for the “kinks” in the
ratio κ ≡ aVA/a

S
A, while the same reason causes also ”kinks” in the NSE (s) at

closed-shell nuclei.

Figure 3. The ratio κ = aVA/a
S
A as a function of A for the isotopic chain of Ni in the case

of Skyrme EDF with use of SLy4, SGII, and Sk3 forces.
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The second EDF that we use in the calculations is that one of Skyrme with
different Skyrme forces (e.g., Ref. [15]). As an example, we present in Figure 3
the calculated value of κ for the Ni chain as a function of A in the case of
the Skyrme EDF. In Figure 4 are shown the values of aVA and aSA for the Sn
isotopic chain. The ranges of changes of both quantities for the three chains in
the case of the Skyrme EDF with SLy4, SGII, and Sk3 forces obtained in the
present work (see also Ref. [14]) are given in Table 1. The ranges of changes
of κ are for the Ni isotopic chain: 1.5 ≤ κ ≤ 1.7 (SLy4 and SGII forces) and
0.88 ≤ κ ≤ 1.05 (Sk3 force), for the Sn isotopic chain: 1.52 ≤ κ ≤ 2.1 (SLy4
and SGII forces) and 0.82 ≤ κ ≤ 1.14 (Sk3 force), and for the Pb isotopic
chain: 1.65 ≤ κ ≤ 1.75 (SLy4 and SGII forces) and 0.84 ≤ κ ≤ 0.88 (Sk3
force). We note that the ranges of κ for the SLy4 and SGII forces in the three
chains are in agreement with those obtained in Ref. [20] 1.6 ≤ κ ≤ 2.0 from
analyses of masses and skins.

We find that our results for aVA are almost independent on A for a given
isotopic chain and Skyrme force. They are also similar in the different chains
for a given Skyrme force. The comparison of the results of our approach with
those of other authors shows that our values of aVA for the isotopic chains of Ni,
Sn, and Pb for the SGII and Sk3 forces are in agreement with those from, e.g.,
Refs. [16, 17, 19] given above, while the obtained values for the SLy4 force are
comparable with the results in Ref. [3]. We note a ”kink” in the behavior of κ
for the Ni chain at A = 78, for the Sn chain at A = 132 and a lack of ”kinks”
for the Pb chain, like in the case when the Brueckner EDF is used. A ”kink” at
Ni chain at A = 78 can be seen also in the A-dependence of aSA, as well as a
”kink” of aSA is seen at A = 132 in the case of the Sn chain. In the latter small
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Sn, and Pb for the SGII and Sk3 forces are in agreement with those from, e.g.,
Refs. [16, 17, 19] given above, while the obtained values for the SLy4 force are
comparable with the results in Ref. [3]. We note a ”kink” in the behavior of κ
for the Ni chain at A = 78, for the Sn chain at A = 132 and a lack of ”kinks”
for the Pb chain, like in the case when the Brueckner EDF is used. A ”kink” at

8

Figure 4. The values of aVA (a) and aSA (b) as functions of A for the isotopic chain of Sn
in the case of Skyrme EDF with use of SLy4, SGII, and Sk3 forces.
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Table 1. The ranges of changes of aVA and aSA and their average values for SLy4, SGII,
and Sk3 forces used in the calculations with Skyrme EDF for the Ni, Sn, and Pb isotopic
chains.

Isotopic chain NSE component SLy4 SGII Sk3

Ni aVA 40.8÷ 42 33.5÷ 33.7 27.9÷ 28.3
aSA 24.6÷ 26.7 20÷ 22.5 26.5÷ 32.1
āVA 41.27 33.61 28.13
āSA 25.9 21.55 30.01

Sn aVA 40÷ 41.1 32.8÷ 33.6 28.3÷ 28.6
aSA 20.3÷ 25.5 16÷ 21.5 25.1÷ 35
āVA 40.6 33.06 28.51
āSA 23.36 19.21 30.24

Pb aVA 39.1÷ 39.6 32.3÷ 32.4 28.8÷ 29.1
aSA 22.7÷ 23.5 18.8÷ 19.7 32.7÷ 34.6
āVA 39.35 32.34 28.88
āSA 23.1 19.34 33.68

”kinks” can be observed also for aVA especially at A = 132 for the SLy4 force.
There are no “kinks” of aVA and aSA in the Pb chain.

4 Conclusions

The results of the present work can be summarized as follows:
i) An approach within the CDFM is developed to calculate the symme-

try energy (s), its volume (aVA) and surface (aSA) components and their ratio
κ = aVA/a

S
A. The energy-density functionals of Brueckner and Skyrme are used.

The weight function of CDFM is obtained by using the proton and neutron den-
sities calculated within a self-consistent HF+BCS method with Skyrme forces.
The approach makes it possible to start with the global values of parameters for
infinite nuclear matter and to derive their corresponding values in finite nuclei
which become A-dependent;

ii) The quantities aVA , aSA and κ are calculated for Ni, Sn and Pb isotopic
chains. The results are compared with those of other theoretical methods, as well
as with available experimental data obtained from analyses of binding energies,
neutron-skin thicknesses, excitation energies to isobaric analog states and others.
The existing agreement in various cases is discussed;

iii) ”Kinks” of theA-dependence of κ, as well as of aVA and aSA when Brueck-
ner EDF is used is found in the cases of double-magic nuclei 78Ni and 132Sn,
as well as a ”kink” of aVA for 140Sn is observed. The ”kinks” reflect the shell
peculiarities. That one of aVA for 140Sn is related to the closed 2f7/2 subshell
of neutrons. The origin of the ”kinks” is in the different behavior of the density
distributions ρ(r) for the isotopes and thus, of the weight function |F(x)|2;
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iv) Similarly to the case when Brueckner EDF is used, ”kinks” of κ(A) and
aSA for 78Ni and 132Sn exist in the case when the Skyrme EDF is used;

v) The obtained within the CDFM NSE coefficient s = aa(A) in finite nuclei
(in the cases of both EDFs) avoids the problem related to fitting HF energies
to LDM parametrization. It makes it possible to obtain additional information
not only for aVA , but also about the surface symmetry energy aSA that is poorly
constrained by empirical data. The obtained results provide a possibility to test
the properties of nuclear energy-density functionals and characteristics related
to NSE, e.g. the neutron-skin thickness of finite nuclei.

Acknowledgements

Two of the authors (A.N.A. and M.K.G.) are grateful for support of the Bulgarian
Science Fund under Contract No. DFNI-T02/19. E.M.G. and P.S. acknowledge
support from MINECO (Spain) under Contract FIS2014-51971-P.

References

[1] D. V. Shetty and S. J. Yennello, Pramana 75 (2010) 259–269; arXiv:1002.0313
[nucl-ex] (2010).

[2] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 81 (1966) 1–60.
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