
NUCLEAR THEORY, Vol. 35 (2016)
eds. M. Gaidarov, N. Minkov, Heron Press, Sofia

Microscopic Analysis of Elastic and Inelastic
πππ-Nucleus Scattering at Energies of (3 3)
Resonance

E.V. Zemlyanaya1,2, V.K. Lukyanov1, K.V. Lukyanov1,2,

I.A.M. Abdul-Magead3, E.I. Zhabitskaya1,2, M.V. Zhabitsky1

1Joint Institute for Nuclear Research, 141980 Dubna, Russia
2State University “Dubna”, 141980 Dubna, Russia
3Cairo University, Cairo, Giza, Egypt

Abstract. The microscopic model of optical potential (OP) is applied for cal-
culations of the π± scattering on the nuclei 28Si, 58Ni, 40Ca, 208Pb at energies
162, 180, and 291 MeV. Such OP depends on the nuclear density distributions
and parameters of the πN scattering amplitudes which are fitted to the pion-
nucleus elastic cross sections. Also, calculations are made using the Kisslinger-
type and Wood-Saxon potentials, and they are found to be in well agreement
to those obtained with a help of our OPs. Then the πN parameters are utilized
for inelastic scattering with excitations of the 2+ and 3− collective states. The
only adjusted parameters are the quadrupole β2 or octupole β3 deformations of
nuclei. The cross sections of elastic and inelastic scattering are calculated with
help of computer code DWUCK4 by solving the relativistic wave equation, and
thus the relativistic and distortion effects in initial and final channels of the pro-
cess are accounted for exactly. The calculated cross sections have been found to
be in a fairly well agreement with the corresponding experimental data. The role
of the nuclear in-medium effect on the πN -scattering amplitude is discussed.

1 Introduction

Two approaches are usually employed in theoretical study of π-nucleus scatter-
ing. First, microscopic local transformed Kisslinger potential having 12 fitted
parameters [1]. It is based on s− and p− πN scattering amplitudes and respec-
tive density distribution function of nuclei. Second, the Glauber high-energy
approximation (HEA) for the π-nucleus amplitude that uses in eikonal phase an
analytic form of the πN amplitude and the nuclear density integrated along the
straight line trajectory of scattering [2].

Our approach is based on construction of the HEA-based folding π-nucleus
microscopic optical potential (OP) [3] which is applied for calculation of pion-
nucleus differential cross-sections by solving the relativistic wave equation [4].
Our aim is an explanation of experimental data on both elastic and inelastic
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scattering in the region of πN (3 3)-resonance energies and estimation of “in-
medium” effect on the elementary π-nucleon amplitude.

The πN amplitude depends on three parameters: total cross section σ, the
ratio α of real to imaginary part of the forward πN amplitude, and the slope
parameter β [4]. They are obtained by fitting the calculated πA differential
cross sections to the respective experimental data on elastic scattering

The established best-fit “in-medium” πN parameters are compared with
these for the corresponding “free” πN scattering amplitudes.

Then, the best-fit “in-medium” πN parameters are used for analysis of in-
elastic scattering data. But for inelastic scattering, we substitute into the mi-
croscopic OP the generalized density distribution function ρ(r, ξ) depended on
collective variables ξ of a target nucleus. Thus one can obtain the microscopic
transition OP (TOP) Uinel(r, ξ) responsible for inelastic scattering with exci-
tations of the nuclear collective states [5]. This TOP provides calculations of
the pion-nucleus inelastic scattering with excitations of the quadruple 2+ and
octuple 3− collective states of the target nuclei studied earlier in elastic scatter-
ing of pions. This scheme does not contain free parameters except the static (or
dynamic) deformations of nuclei βλ (λ = 2, 3) that characterize their excited
states.

Application is presented for elastic and inelastic scattering of pions on nuclei
28Si, 58Ni, 40Ca and 208Pb at energies 162, 180, and 291 MeV. Experimental
data are from [6–8].

2 Elastic Scattering

2.1 Basic equations

The differential cross sections are calculated as done in [9] by solving the rel-
ativistic wave equation with the help of the standard DWUCK4 computer code
[10]:

(
∆ + k2

)
ψ(~r) = 2µ̄U(r)ψ(~r), U(r) = UH(r) + UC(r) (1)

Here k is relativistic momentum of pions in c.m. system,

k =
MAk

lab
√

(MA +mπ)2 + 2MAT lab
, klab =

√
T lab (T lab + 2mπ),

µ̄ =
EMA

E +MA
– relativistic reduced mass, E =

√
k2 +m2

π – total energy, mπ

and MA – the pion and nucleus masses.
HEA-based microscopic OP for elastic scattering has the form [3]:

UH = −σ (α+ i) · ~cβc
(2π)2

∫ ∞

0

dq q2j0(qr)ρ(q)fπ(q), (2)

104



Microscopic Analysis of Elastic and Inelastic π-Nucleus Scattering...

where fπ(q) is formfactor of the πN -scattering amplitude:

FπN (q) =
k

4π
σ[i+ α] · fπ(q), fπ(q) = e−βq

2/2, (3)

~c = 197.327 MeV·fm, j0 is the spherical Bessel function, βc = k/E, σ – total
cross section of πN scattering, α – ratio of real to imaginary part of the forward
πN amplitude, β – the slope parameter, ρ(q) – form factor of the nuclear density
distribution taken as the symmetrized Fermi-function:

ρSF (r) = ρ0
sinh (R/a)

cosh (R/a) + cosh (r/a)
, ρ0 =

A

1.25πR3

[
1 + (

πa

R
)2
]−1

. (4)

The radiusR and diffuseness a are known from electron-nucleus scattering data.
The charge-independent principle fπ±p = fπ∓n lets to use only 3 averaged

parameters for πN -amplitude instead of 12 for π±p and π±n, separately. So,
three “in-medium” parameters σ, α, β of the πN scattering amplitude are ob-
tained by fitting to the experimental πA differential cross sections. In order to
obtain these parameters, we minimize the function

χ2 = f (σ, α, β) =
∑

i

(yi − ŷi(σ, α, β))
2

s2
i

, (5)

where yi =
dσ

dΩ
and ŷi =

dσ

dΩ
(σ, α, β) are, respectively, experimental and theo-

retical differential cross sections, si – experimental errors. The fitting procedure
is based on the asynchronous differential evolution algorithm [11].

2.2 Results of calculations

Figures 1 and 2 demonstrate a reasonable agreement of the calculated and ex-
perimental differential cross sections of elastic pion-nucleus scattering at ener-
gies 291 and 162 MeV. Experimental data in Figures 1 and 2 are, respectively,
from [6] and [7]. In calculations, radius R and diffuseness a of the target nu-
clear density distribution are following: R = 3.134 fm and a = 0.477 fm for
28Si [12], R = 4.2 fm and a = 0.475 fm for 58Ni [13], R = 6.654 fm and
a = 0.475 fm for 208Pb [14]. Parameters α, β, σ of “in-medium“ πN amplitude
are given in [4]. More calculations (for the energies 130, 226, and 230 MeV) are
presented in [4].

Figure 3 demonstrates the case of elastic scattering π+ cross sections on
58Ni at 162 MeV, calculated using the 3-parameter microscopic OP (2) in com-
parison with results for the 12-parameter local Kisslinger-Ericson πA-potential
calculated as follows

UKE(r) =
(~c)2

2ω
{ q(r)

1− α(r)
− k2α(r)

1− α(r)
− [

0.5∇2α(r)

1− α(r)
+(

0.5∇α(r)

1− α(r)
)2]} (6)
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Figure 1. Comparison of the calculated pion-nucleus elastic scattering differential cross
sections at T lab = 291 MeV with experimental data from [6]. The best-fit “in-medium”
parameters σ, α, and β are given in [4].
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Figure 2. The same as in Figure 1 but for T lab = 162 MeV. The experimental data are
from [7].

where ω is the total pion energy; q(r) and α(r) are the nuclear density depended
functions parameterized in [1]. Parameters of the πN amplitude (3) in micro-
scopic OP are following: α = 0.44, β = 0.75 fm, σ = 9.28 fm.

It is seen that both approaches provide almost the same agreement of calcu-
lated cross sections with experimental data in spite the very different shape of
potential curves.

Comparison of microscopic OP (2) with the standard Woods-Saxon (WS)
potential in case π−+208Pb at 162 MeV is presented in Figure 4. Parameters of
6-parameter WS potential have been taken from [15]:

106



Microscopic Analysis of Elastic and Inelastic π-Nucleus Scattering...

0 5 10
−80

−60

−40

−20

0

20

40

60

80

100

120

r [fm]

R
ea

l O
P

 [M
eV

]

0 5 10
−150

−100

−50

0

50

r [fm]

Im
ag

 O
P

 [M
eV

]

20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

π++58Ni; 162MeV

Θ
c.m.

 [deg]

dσ
/d

Ω
 [m

b/
sr

]
Figure 3. Solid: 3-parameter microscopic OP (2) and respective differential cross sections
of elastic scattering π+ on 58Ni at 162 MeV. Dashed: the same for the 12-parameter
Kisslinger potential (6). Experimental data from [7].
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Figure 4. Solid: 3-parameter microscopic OP (2) and respective differential cross sections
of elastic scattering π−+208Pb at 162 MeV. Dashed and dash-dotted: the same for the
6-parameter WS potential, parameters are given in the text. Experimental data from [7].

1. V0 = −30.15MeV, av = 0.431 fm, Rv = 7.649 fm, W0 = −200 MeV,
aw = 0.675 fm, Rw = 6.408fm (dashed lines in Figure 4)

2. V0 = −59.7 MeV, av = 0.489 fm, Rv = 7.210 fm, W0 = −100MeV,
aw = 0.715 fm, Rw = 5.091 fm (dash-dotted lines in Figure 4)

Both sets of parameters are found to provide the same agreement with experi-
mental data (χ2 = 2.2) and almost the same quantity of reaction cross section
(σR = 2690 mb and σR = 2707 mb, respectively, for the 1st and the 2nd set of
parameters).

The microscopic OP in Figure 4 was calculated with α = 0.34, β = 1.02 fm,
σ = 9.69 fm. We obtained the πN total reaction cross section σR = 2624mb
and deviation (5) χ2 = 3.7. Respective potentials and cross sections are shown
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in Figure 4 by solid lines. It is seen that the potentials have the very different
strength but they are very close in the peripheral region of target nucleus. It
looks, this region is most important for explanation of experimental data.

One can conclude that our approach based on 3-parameter OP, allows one
to explain experimental data on pion-nucleus elastic scattering. Agreement be-
tween theoretical and experimental cross sections is comparable with results of
application of 12-parameter Kisslinger potential (6) and 6-parameter standard
WS potential.

3 Inelastic Scattering

3.1 Basic equations

In the inelastic scattering case, as in Section 2, we utilize the HEA-based micro-
scopic OP but in the generalized form [16]:

Uopt(r) = − (~c)βc
2(2π)3

σ [i+ α] ·
∫
e−iqrρ(q) fπ(q) q2dq, βc = k/E (7)

where ρ(q) – formfactor of a nuclear density distribution and fπ(q) – formfactor
of πN -amplitude as done in (3). To get the generalized microscopic OP for
calculating both elastic and inelastic scattering, we use the generalized form
factor of a density distribution function

ρ(q) =

∫
eiqr ρ(r(ξ)) d3r (8)

where r(ξ) includes a dependence on the ξ-variables that define collective mo-
tion of a nucleons. We use the following standard prescription:

r⇒ r + δ(λ)(r), δ(λ)(r) = − r
( r
R

)λ−2∑
µ
αλµYλµ(r̂), (9)

where αλµ are the nuclear quadrouole and octupole deformation collective vari-
ables for λ=2,3.

Substituting this one in the density and then in the initial optical potential,
and terminating their expansions at linear terms in δ(λ)(r) one obtains

ρ(r) = ρ(r) + ρλ(r)
∑

µ
αλµYλµ(r̂), ρλ(r) = −r

( r
R

)λ−2 dρ(r)

dr
(10)

and then one gets their form factors

ρ(q) = ρ(q) + ρλ(q) iλ
∑

µ
αλµYλµ(q̂), (11)

ρ(q) = 4π

∫
j0(qr) ρ(r) r2dr, (12)

ρλ(q) = 4π

∫
jλ(qr) ρλ(r) r2dr. (13)
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Finally, we obtain potentials for elastic and inelastic scattering:

U(r) = Uopt(r) + U (λ)(r), U (λ)(r) = Uλ(r)
∑

µ
αλµYλµ(r̂), (14)

Uopt(r) = − (~c)βc
(2π)2

σ (α + i)

∫
j0(qr) ρ(q)fπ(q) q2dq, (15)

Uλ(r) = − (~c)βc
(2π)2

σ (α + i)

∫
jλ(qr) ρλ(q)fπ(q) q2dq. (16)

Here the spherically symmetric part Uopt(r) provides elastic scattering calcu-
lations while the Uλ(r) is the transition OP used for calculations of inelastic
scattering cross sections with excitations of the 2+ and 3− collective states of
nuclei.

3.2 Results of calculations

Elastic and inelastic scattering cross sections in cases π±+58Ni at 162 MeV,
π±+40Ca at 180 MeV, and π±+58Ni at 291 MeV are presented, respectively,
in Figures 5, 6, and 7. Solid curves have been calculated on the basis of our

Figure 5. Elastic (left panel) and inelastic (right panel) scattering cross sections in case
π±+58Ni at 162 MeV. Solid: calculation with ”in-medium” πN parameters α, β, σ
from [4]; dashed: calculation with “free” πN parameters from [17]. Experimental data
from [7].
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Figure 6. The same as in Figure 5 but for π±+40Ca at 180 MeV. Experimental data
from [8].

microscopic approach with “in-medium” parameters α, β, σ from [4] and with
parameter of deformation fitted to experimental data on inelastic scattering [5].
Experimental data in Figures 5, 6, 7 are, respectively, from [7], [8], and [6].
Dashed curves are the calculations with the parameters σ, α, β that correspond
to the pion scattering on“free” nucleons at respective energies [17]. More calcu-
lations are presented in our recent paper [16].

It is seen that “free” πN parameters α, β, σ cannot explain experimental data
for the intermediate energies, in particular, 162 MeV and 180 MeV (Figures 5
and 6). Contrary, in the case of 291 MeV out of the (3 3) resonance, the “in-
medium” and “free” curves are close between other, see Figure 7. This can mean
that in-medium effect is strong at the energies of maximum of (3 3) resonance
(between 150 and 200 MeV) and it becomes weak as T lab > 250 MeV. This
is confirmed by comparison of averaged “in-medium” and “free” parameters
σ, α, β of πN scattering amplitude, see [4].

4 Summary

• The HEA-based 3-parametric microscopic OP is shown to provide a rea-
sonable agreement with experimental data of π±-nucleus elastic and in-
elastic scattering at energies of (3 3) resonance.
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Figure 7. The same as in Figure 5 but for π±+40Ca at 180 MeV. Experimental data
from [6].

• In the case of inelastic scattering, the proposed approach operates with the
primary nature of a target nucleus: the density distribution function, while
the other models use the secondary description function – a derivative of
an optical potential of scattering.

• If one so explains elastic scattering then the only structure parameter, the
deformation of a target nucleus βλ is necessary to fit the data on inelastic
scattering. The forms of theoretical curves are not to be fitted in such
comparisons with the data.

The work is supported by the Program of cooperation between JINR and
Egypt.
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