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Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131
Padova, Italy

Abstract. We discuss the effect of core excitation in the scattering and breakup
of a two-body halo nucleus on several targets. The structure of the projec-
tile is described in the weak-coupling limit, assuming a particle-rotor model.
This Hamiltonian is diagonalized in a finite and square-integrable basis of pseu-
dostates whose radial functions result from applying a transformation to the
harmonic oscillator basis. This method (THO) is combined with a reaction for-
malism (XCDCC) which takes into account dynamic core excitation. Under this
framework, we consider the scattering of the halo nucleus 11Be on 1H, 64Zn, and
208Pb targets, comparing with available data for these reactions.

1 Introduction

Nuclei in the proximity of the proton and neutron drip-lines are often weakly
bound, or even unbound, and hence their properties are influenced by positive-
energy states. Collisions of these systems with stable nuclei will also be influ-
enced by the coupling to the unbound states. This effect was first noticed in
deuteron-induced reactions, and later observed in the scattering of other loosely
bound nuclei, such as halo nuclei. Several formalisms have been developed
to account for the effects of the coupling to breakup channels on reaction ob-
servables: Continuum-Discretized Coupled-Channels (CDCC) method [1,2], the
adiabatic approximation [3, 4], the Faddeev/AGS equations [5, 6], and a variety
of semi-classical approximations [7–12].

Typically, these approaches make use of a few-body description of the weakly
bound nucleus. Furthermore, in their standard formulations, the constituent frag-
ments are considered to be inert and, therefore, possible excitations of them are
ignored. Moreover, bound and unbound states of the few-body system are con-
sidered to be well described by pure single-particle configurations. This approxi-
mation ignores possible admixtures of different core states in the wave functions
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of the complete projectile. These admixtures are known to be important, par-
ticularly in the case of well-deformed cores, as for example in the 11Be halo
nucleus.

A first attempt to incorporate core excitation effects within a coupled-channels
calculation was done in Ref. [13], where the XCDCC formalism was derived as
an extension of the CDCC method. Recently, the XCDCC has been combined
with the THO approach [14] in order to incorporate a pseudostates (PS) basis in
the formalism [15].

Within the CDCC and XCDCC formalisms, the breakup cross sections are
described in the c.m. frame, using two-body kinematics. Because of this, the
experimental data should be transformed to this frame, an ambiguous process for
inclusive data. Furthermore, recent advances at the radioactive beam facilities
have opened the possibility to perform exclusive breakup measurements with
unstable nuclei. This will require extensions of reaction frameworks and, for
the specific case of the CDCC formalism, fivefold fully exclusive cross sections
were already derived in [16]. However, a study of exclusive observables in the
laboratory frame with core excitation has never been addressed and this will
be the main purpose of a forthcoming paper [17]. In this work we present the
results within the XCDCC+THO framework [15] for breakup reactions of 11Be
on several targets at low and intermediate energies in the c.m frame.

The manuscript is structured as follows. In Section 2 we briefly recall the
THO basis to describe two-body loosely-bound systems with core excitation. In
Section 3, we review the XCDCC approach and we include the main results for
11Be breakup reactions in Section 4. Finally, we summarize and conclude in
Section 5.

2 Structure of the Projectile

We consider a two-body composite projectile, made of a valence particle coupled
to a core nucleus, so the Hamiltonian of the system, Hp, can be described in the
weak-coupling limit:

Hp(~r, ξ) = T (~r) + Vvc(~r, ξ) + hc(ξ), (1)

where T (~r), Vvc, and hc(ξ) refer to the core-valence kinetic energy operator, the
valence-core interaction, and the intrinsic Hamiltonian of the core, respectively.

Therefore, the projectile states are expanded as a superposition of products
of single-particle configurations and core states. We also assume in the calcu-
lations that the core nucleus has a permanent axially symmetric deformation
and the surface radius in the body-fixed frame is parameterized as R(ξ̂) =

R0[1 + β2 Y20(ξ̂)], with R0 an average radius and β2 the deformation param-
eter [18]. Starting from a central potential, V (0)

vc (r), the full valence-core inter-
action is obtained by deforming this interaction as,

Vvc(~r, ξ̂) = V (0)
vc

(
r − δ2Y20(ξ̂)

)
, (2)
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with δ2 = β2R0. The transformation to the laboratory frame through the rota-
tion matrices Dλµ0(α, β, γ) (depending on the Euler angles {α, β, γ}), and the
subsequent expansion in spherical harmonics, yields the following potential (see
e.g. Ref. [19]):

Vvc(r, θ, φ) =
√

4π
∑

λµ

Vλvc(r)Dλµ0(α, β, γ)Yλµ(r̂), (3)

where the radial form factors are given by:

Vλvc(r) =

√
2λ+ 1

2

∫ 1

−1

Vvc (r − δ2Y20(θ′, 0))Pλ(cos θ′) d cos θ′. (4)

The eigenstates and the corresponding wavefunctions are obtained by diag-
onalizing the Hamiltonian in a finite basis of N square integrable functions:

φTHOi,α,Jp,Mp
(~r, ξ) =

RTHOi,` (r)

r

[
Y(`s)j(r̂)⊗ ϕI(ξ)

]
JpMp

, (5)

where the index i specifies the basis function (with i = 1, . . . , N ) and the label
α denotes the set of quantum numbers {`, s, j, I}, with ~̀ (valence-core orbital
angular momentum) and ~s (spin of the valence) both coupled to ~j (total valence
particle angular momentum). The total spin of the projectile, ~Jp, is given by
the coupling between ~j and ~I (intrinsic spin of the core). The radial, RTHOi,` (r),
and angular parts, Y(`s)j(r̂), describe the valence-core relative motion, while
the functions ϕI(ξ) correspond to the core states. The functions RTHOi,` (r) are
generated by applying a local scale transformation (LST) to the spherical HO
basis functions,

RTHOi,` (r) =

√
ds

dr
RHOi,` [s(r)], (6)

whereRHOi,` [s(r)] results from the composition of the radial part of the HO func-
tions and the LST, s(r), whose expression follows the analytical prescription
in [20]

s(r) =
1√
2b

[(
1

r

)m
+

(
1

γ
√
r

)m]− 1
m

, (7)

that depends on the parametersm, γ and the oscillator length b. Nevertheless, ac-
cording to Ref. [20], the transformation shows a weak dependence on m. Thus,
we set this parameter to the value m = 4 proposed in [20] and the adopted LST
depends actually on γ and b.

The eigenstates of the Hamiltonian (1) are expanded in terms of the THO
basis functions,

Φ
(N)
n,Jp,Mp

(~r, ξ) =

N∑

i=1

∑

α

Cni,α,Jp
RTHOi,` (r)

r

[
Y(`s)j(r̂)⊗ ϕI(ξ)

]
JpMp

, (8)
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where n is an index identifying each eigenstate and Cni,α,Jp are the expansion
coefficients of the pseudostates in the truncated basis. The corresponding eigen-
values are identified with the energies of bound or continuum states, giving rise
to a discrete representation of the energy spectrum.

3 Reaction Formalism: XCDCC Method

The formalism has been presented in detail in Ref. [15] so we just summarize
here the main formulae. The three-body wave functions ΨJT ,MT

are expressed
in terms of the set of projectile eigenstates {Φ(N)

n,Jp
}:

ΨJT ,MT
(~R,~r, ξ) =

∑

β

χJTβ (R)
[
YL(R̂)⊗ Φ

(N)
n,Jp

(~r, ξ)
]
JT ,MT

, (9)

where ~R stands for the relative coordinate between the projectile center of mass
and the target (assumed to be structureless and spinless) while the different quan-
tum numbers are labeled by β = {L, Jp, n}, with ~L (projectile-target orbital an-
gular momentum) and ~Jp both couple to the total spin of the three-body system
~JT , once the spin of the target is ignored.

Upon inserting (9) in the Schrödinger equation, the coefficients χJTβ (R) can
be calculated from the system of coupled differential equations, whose main
ingredients are the coupling potentials:

UJTβ,β′(R) = 〈β; JT |Vct(~R,~r, ξ) + Vvt(~R,~r)|β′; JT 〉 . (10)

The valence particle-target interaction (Vvt) is assumed to be central, and
will be represented by a phenomenological optical potential, while the core-
target interaction (Vct) is assumed to contain a non-central part, responsible for
the dynamic core excitation/deexcitation mechanism. In general, this interaction
can be expressed in the form:

Vct(~R,~r, ξ) =
√

4π
∑

Qq

VQq(rc, ξ) YQq(r̂c), (11)

where ~rc = ~R−mv/(mv+mc)~r, withmc andmv the core and valence particle
masses, respectively. Furthermore, in the rotational model assumed here, the
multipole terms VQq(rc, ξ) factorize into a radial part and a structure part, i.e.,

Vct(~R,~r, ξ) =
√

4π
∑

Qq

VQct(rc) T ∗Qq(ξ) YQq(r̂c). (12)

The matrix elements (10) were explicitly evaluated in Ref. [13]:

UJTβ:β′(R) = L̂L̂′ĴpĴ ′p(−1)Jp+JT
∑

Λ

(−1)ΛΛ̂2

×
(

Λ L L′

0 0 0

){
Jp J ′p Λ
L′ L JT

}
FΛ
Jpn:J′pn

′(R) . (13)
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The radial dependence is given by the form factors FΛ
Jpn:J′pn

′(R) which, in
addition to geometric coefficients, contain the structure reduced matrix elements
〈I‖TQ(ξ)‖I ′〉.

For the Coulomb part of the core-target interaction, we use the usual multi-
pole expansion

V coul
ct (~rc, ξ) =

∑

Q,q

4π

2Q+ 1

Zte

rQ+1
c

M(EQq) YQq(r̂c), (14)

whereM(EQq) is the multipole electric operator. Comparing with the general
expression (11) we have

VQq(rc, ξ) ≡
√

4π

2Q+ 1

Zte

rQ+1
c

M(EQq). (15)

For the nuclear part of the core-target interaction, we follow the same ap-
proach as for the valence-core interaction.

4 Application to 11Be Reactions

The formalism presented has been previously applied to the scattering of the
halo nucleus 11Be on several targets and the results compared with the available
experimental data in Ref. [15]. We refer to this work for further details about
the potentials and we focus on the main features of the reactions on the different
targets.

4.1 11Be+ p resonant breakup

The XCDCC + THO method was applied to the breakup of 11Be on a proton
target at 63.7 MeV/nucleon giving the results in Figure 1, where the solid line
corresponds to the full calculation. Considering the experimental data [21], the
agreement is fairly reasonable, except for the first data point in the higher energy
interval.

With the aim of studying the dynamic core excitation effects we also com-
puted the cross sections without the Q = 2 term in the nuclear part of the core-
target interaction, but keeping the deformation in the neutron-core interaction
(dotted line). This result differs significantly from the full calculation and the
difference is particularly noticeable in the higher energy interval, due to the dom-
inance of the 3/2+ resonance, which is mostly populated by a core excitation
mechanism [22].

4.2 11Be+ 64Zn elastic and breakup

In the case of 11Be+p breakup, the deformed part of the core-target interaction
gives rise to an increase of the breakup cross sections. We show now the effect
of these terms in the 11Be+64Zn reaction at 28.7 MeV, for which quasi-elastic
(elastic + inelastic) data have been reported in Ref. [23].
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Figure 1. (Color online) Differential breakup cross sections, with respect to the outgoing
11Be∗ c.m. scattering angle, for the breakup of 11Be on protons at 63.7 MeV/nucleon.
Upper and bottom panels correspond to the neutron-core relative energy intervals Erel =
0–2.5 MeV and Erel = 2.5–5 MeV, respectively.

For this purpose, we compare in Figure 2 two XCDCC calculations, with
and without deformation in the 10Be+64Zn interaction, giving almost identical
results. This indicates that the effect of the dynamical core excitation is very
small in this case. We also note that these calculations, although using the same
n+64Zn and 10Be+64Zn potentials as those presented in Ref. [15], have been
obtained after including higher partial waves and excitation energies in the con-
tinuum. The use of this augmented model space results in a slight improvement
with the experimental data from Ref. [23].
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Figure 2. (Color online) Quasi-elastic differential cross section for 11Be on 64Zn at
Elab=28.7 MeV, compared with XCDCC calculations.

4.3 11Be+ 208Pb breakup

As a final example, we performed XCDCC calculations for the collision of 11Be
on a 208Pb target at 69 MeV/nucleon, which corresponds to the energy of the
experiment from RIKEN [24].

At these energies the breakup process connects the ground state directly with
the breakup channels and, at the forward measured angles, the most strongly
coupled states will be the 1/2− and 3/2−. These states cannot be populated by
the dynamic core excitation mechanism in first order because of the quadrupole
nature of this excitation. As a result, for this reaction the main core-excitation
effect is due to the presence of core-excitation admixtures in the projectile states.

The XCDCC calculations are compared with the data in Figure 3 correspond-
ing to the breakup angular distribution, after integration over relative n-10Be en-
ergies below 5 MeV. The solid line is the full calculation after convolution with
the experimental angular resolution quoted in [24]. To illustrate the dominance
of the dipole excitation mechanism, we have plotted also the separate contribu-
tion of the 1/2±, 3/2± and 5/2± states. It can be seen that, at sufficiently small
angles, the breakup is largely dominated by the coupling to the dipole states. The
calculation is found to be in very good agreement with the data without using
any scaling factor.

The dominance of dipole Coulomb couplings can also be seen in Figure 4,
where the differential energy cross section is plotted for two different angular
ranges. In both intervals, the breakup process could be accounted for by us-
ing a pure E1 excitation mechanism even though two small bumps appear at
5/2+ and 3/2+ resonance energies for higher angles. These peaks are related to
quadrupole contributions and they are washed out in the convoluted distribution
because of the energy resolution.
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Figure 3. (Color online) Breakup differential cross section for 11Be on 208Pb at Elab =
69 MeV/nucleon, integrated in the n-10Be relative energy up to 5 MeV. The data are from
Ref. [24]. The lines are XCDCC calculations described in the text. The full calculation
(solid line) has been convoluted with the experimental angular resolution for a meaningful
comparison with the data.
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Figure 4. (Color online) Breakup differential energy cross section for 11Be on 208Pb at
Elab = 69 MeV/nucleon in the c.m. frame. The lines are XCDCC calculations before
(dashed line) and after (solid line) convolution with the experimental energy resolution
for a meaningful comparison with the data in Ref. [24].
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5 Summary and Conclusions

To summarize, we have applied an extension of the CDCC formalism to the
scattering of the two-body halo nucleus 11Be on several inert targets: 1H, 64Zn
and 208Pb at 63.7 MeV/nucleon, 28.7 MeV, and 69 MeV/nucleon, respectively.

The projectile states are described in the weak-coupling limit so they are
expanded as a superposition of products of single-particle configurations and
core states. The continuum spectrum is discretized upon diagonalization of the
hamiltonian in a basis of square-integrable functions. For the relative motion
between the valence particle and the core, we use the analytical Transformed
Harmonic Oscillator (THO) basis.

For the two-body projectile, we adopted a simple particle-rotor model, as-
suming a permanent axial core deformation in 10Be, and the core-target interac-
tion is obtained by deforming a central phenomenological potential. Therefore,
the effect of core excitation is present in both the structure of the projectile and
the dynamics of the reaction, through the non-central part of the potential.

In the 11Be+p reaction, the calculations reproduce well the experimental
breakup data. In particular, we confirm the importance of the dynamic core
excitation mechanism for the excitation of the low-lying 5/2+ and 3/2+ reso-
nances.

The 11Be+64Zn quasi-elastic cross section is well reproduced at all angles,
except for some slight overestimation at θc.m ≈ 30◦. For this medium-mass tar-
get and low incident projectile energy, unlike the proton target case, the dynamic
core excitation mechanism is found to be small and the full calculations can
be simulated using an optical core-target potential describing the corresponding
elastic data.

Finally, the calculated breakup angular distribution for the reaction 11Be +
208Pb is found to reproduce very well the available data. For this heavy tar-
get, and at very small angles, the breakup is dominated by the dipole Coulomb
couplings from the ground state to the 1/2− and 3/2− continuum states. Be-
cause these states cannot be populated by a direct core excitation mechanism,
the effects of this excitation are restricted to the admixture of different core and
valence configurations in the projectile wavefunctions.

Summarizing, the core-excitation is present in the structure of the projectile
for all targets. However, the dynamic core excitation mechanism is only impor-
tant for light targets (for which the dipole excitations are small compared to the
quadrupole collective excitations of the core). Although all the calculations in
this paper correspond to the 11Be nucleus, we believe that the results are extrap-
olable to other weakly-bound nuclei.
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