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Abstract. A possibility to exploit the first-, second-, and third- unique and
the first non-unique forbidden beta decays to estimate the neutrino mass is dis-
cussed. Our findings show that the corresponding Kurie function in the vicinity
of the endpoint is within a good accuracy linear in the limit of massless neutrinos
like the Kurie function of the superallowed beta decay of tritium.

1 Introduction

The absolute neutrino mass scale is important for the physics beyond the Stan-
dard Model. Various experiments with neutrino oscillations proved that neutri-
nos are massive particles. The absolute value of the neutrino masses cannot be
determined by the oscillation experiments being kind of the interference experi-
ments.

A precise and model independent way to obtain the direct information on the
neutrino mass is the kinematical analysis of the endpoint of the electron energy
spectrum in single β decays such as the tritium β decay. The first measurement
was performed by Hanna and Pontecorvo in 1949 [1] and a limit of ∼ 1 keV
was obtained. Currently, from the Mainz and Troitsk experiments for the upper
bound on the effective neutrino mass mβ we have mβ < 2.2 eV [2]. The KA-
TRIN experiment [3] aims at reaching a sensitivity of 0.2 eV. Another promising
way to determine the absolute neutrino mass scale is to exploit the first unique
forbidden β decay of 187Re due to its low transition energy of 2.47 keV [4].

The aim of this contribution is to study the theoretical electron energy spec-
trum in the first, second, and third unique and the first non-unique forbidden
beta decays. The attention is paid to the Kurie function near the endpoint as a
function of the neutrino mass mβ .

2 Forbidden Beta Decays

The width of the first non-unique (∆Jπ = 0−) forbidden β decay for the spin
of the initial nucleus Ji = 0 takes the same form,

dΓ
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as the differential decay rates of the first (∆Jπ = 2−), second (∆Jπ = 3+), and
third (∆Jπ = 4−) unique forbidden β decays. Here, GF is the Fermi constant
and Vud is the element of the Cabibbo-Kobayashi-Maskawa mixing matrix. pe,
Ee, and E0 are the momentum, energy, and the maximal endpoint energy (in the
case of zero neutrino mass) of the electron, respectively. The neutrino energy
and momentum, respectively, areEν = E0−Ee and pν =

√
(E0 − Ee)2 −m2

j .
Uej and mj are the element of neutrino mixing matrix and the neutrino mass,
respectively. θ(x) is a theta (step) function.

We stress that there is only one nuclear matrix element BA which enters the
decay rate given in Eq. 1. For a given particular forbidden β transition, i.e. for
the first non-unique (A = 0−) and the first (A = 2−), second (A = 3+), and
third (A = 4−) unique forbidden β decay the nuclear matrix element is given as
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Here, gA denotes an axial-vector coupling constant. The functions GA(Ee) de-
pend solely on the electron energy.
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The Fermi functions associated with the emission of s1/2, p1/2, p3/2, d5/2,
and f7/2-state electron, respectively, are defined as

Fs1/2(Ee, R) = g2
−1(Ee, R) + f2

+1(Ee, R),

Fp1/2(Ee, R) =
g2
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,
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(4)

The β transitions with the ∆Jπ = 0− are non-unique first forbidden. There-
fore, the decay rate consists of three contributions (see Eq. 3) associated with
emission of the electron in s1/2-state, p1/2-state and the interference between
s1/2-state and p1/2-state, respectively. The corresponding Fermi function for
the interference term is defined as

Fsp1/2(Ee, R) =
g+1(Ee, R)f+1(Ee, R)− g−1(Ee, R)f−1(Ee, R)

peR/3
. (5)

Important ingredients in the Fermi functions are the radial electron wave
functions, g−k(Ee, R) and fk(Ee, R), which satisfy the radial Dirac equations.
The input is the potential of Coulomb field of daughter nucleus distorted with
screening potential of electrons of daughter atom. The electron radial wave func-
tions are evaluated by means of the subroutine package RADIAL [5]. Here we

Table 1. Nuclei which beta decays are classified as first, second, and third unique and
first non-unique are listed. Both transitions to the ground state with spin and parity Jπ

and the first excited state Jπ1 of final nucleus are considered. We note that Q = E0−me

Parent(Jπii ) Daughter(J
πf
f ) ∆Jπ Q-value, keV T1/2, yrs

10Be(0+) 10B(3+) 3+ 556 1.51× 106

40K(4−) 40Ca(0+) 4− 1311.07 1.248× 109

79Se(7/2+) 79Br(3/2−) 2− 150.6 3.26× 105

90Sr(0+) 90Y(2−) 2− 546 28.79
93Zr(5/2+) 93Nb(1/2−1 ) 2− 60 1.61× 106

107Pd(5/2+) 107Ag(1/2−) 2− 34.1 6.5× 106

138La(5+) 138Ce(2+
1 ) 3+ 255.3 1.05× 1011

140Ba(0+) 140La(0−1 ) 0− 468.9 3.49× 10−2

144Ce(0+) 144Pr(0−) 0− 318.7 7.8× 10−1

187Re(5/2+) 187Os(1/2−) 2− 2.663 4.35× 1010
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have made a reasonable assumption that in β decay of nuclei participate mostly
nucleons close to the Fermi level, i.e. the radial electron wave functions are
evaluated at the nuclear surface R = 1.2A1/3 fm.

In Table 1, we present nuclei which undergo β decays that are classified as
the first, second, and third unique and the first non-unique forbidden. Our atten-
tion has been focused primarily on the decays with small Q value and lifetime
larger than 10 days.

3 Kurie Functions

The current upper limit on neutrino mass holds in the degenerate neutrino mass
region, i.e. m1 ' m2 ' m3 ' mβ =

∑3
j=1 |Uej |2mj . The Kurie function for

the allowed transitions takes the following form,

K(Ee,mβ) ∼ (E0 − Ee) 4

√
1−
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β
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. (6)

We define the Kurie functions for the first non-unique and the first, second , and
third unique forbidden β decays, respectively, in such a way,
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that they resemble the Kurie function for the allowed β decays. The shape factors
SA(Ee) are given as

S0−(Ee) =
(

1 + 2
Fsp1/2(Ee, R)p2

ν

Fp1/2(Ee, R)peEν
+
Fs1/2(Ee, R)p2

ν

Fp1/2(Ee, R)p2
e

)
,

S2−(Ee) =
(

1 +
Fs1/2(Ee, R)p2

ν

Fp3/2(Ee, R)p2
e

)
,

S3+(Ee) =
(

1 +
10Fp3/2(Ee, R)p2

ν

3Fd5/2(Ee, R)p2
e

+
Fs1/2(Ee, R)p4

ν

Fd5/2(Ee, R)p4
e

)
,

S4−(Ee) =
(

1 + 7
Fd5/2(Ee, R)p2

ν

Ff7/2(Ee, R)p2
e

+ 7
Fp3/2(Ee, R)p4

ν

Ff7/2(Ee, R)p4
e

+
Fs1/2(Ee, R)p6

ν

Ff7/2(Ee, R)p6
e

)
.

(8)

We performed numerical analysis of the shape factors SA(Ee) for the par-
ticular nuclei listed in Table 1. They are plotted in Figure 1 against the electron
energy close to the endpoint except 187Re due to an extremely low Q value. Our
findings show that the shape factors can be approximated as SA(Ee) ∼ 1 close
to the endpoint for all nuclei given in Table 1. Then the Kurie functions for the
first non-unique and the first, second, and third unique forbidden β decays can
be approximated with the Kurie function for the allowed transitions,

KA(Ee,mβ) ∼= GFVud

√
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Figure 1. The shape factors as a function of the electron energy.
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Figure 1. The shape factors as a function of the electron energy.
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The goal is that the Kurie plot is linear only in the case of massless neutrinos.
However, the linearity is lost for the non-zero neutrino mass.

4 Conclusions

The kinematical measurement of the neutrino mass has been performed in the
laboratory by taking the advantage of the superallowed β decay of tritium. We
found that this goal can be achieved also with the forbidden β decays. It is
shown that the Kurie function for the first non-unique and the first, second, and
third unique forbidden β decays close to the endpoint coincides up to a factor
to the Kurie function of the superallowed β decay of tritium having the same
dependence on the effective neutrino mass mβ .
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