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Abstract. It is possible to calculate nuclear matrix elements of neutrinoless
double-β decay using virtual decay paths with two-particle transfer under well-
known the closure approximation. The nuclear matrix elements are calculated
using the proton-neutron quasiparticle random-phase approximation (QRPA)
for the original double-β path and the like-particle QRPA for the two-particle-
transfer path. I determine the strength of the isoscalar proton-neutron pairing
interaction so as to obtain the same nuclear matrix elements by the two calcula-
tions. The consistency of the QRPA approach is improved by this method.

1 Introduction

Since the discovery of the neutrino oscillation [1–4], the determination of the
neutrino masses has been one of the most important subjects in physics. One
of quite few methods for the determination is the method using the neutrinoless
double-β (0νββ) decay of nuclei. This decay occurs, if the neutrino is a Majo-
rana particle, i.e.the neutrino itself is the antineutrino. In addition, if this decay is
observed, it would be the first evidence that the lepton number is not conserved.
Moreover, information on the right-handed neutrino would be obtained. Many
experiments are under operation or in preparation for detecting the 0νββ decay
using the underground facilities.

The principle for determining the neutrino mass by the 0νββ decay is given
by a basic equation of quantum mechanics, that is, the one that the decay prob-
ability is proportional to the squared absolute value of the transition matrix el-
ement. In the 0νββ decay, this squared one can be written as the product of
the squared absolute value of the nuclear matrix element, phase-space factor,
and the squared effective neutrino mass scaled by the electron mass, and this
effective neutrino mass provides us with the mass scale of the neutrino. The
phase-space factor is calculated from the wavefunctions of the emitted electrons
and established better (see Ref. [5] and references therein) than the nuclear ma-
trix elements. Establishment of the nuclear matrix elements is more difficult be-
cause the accurate nuclear wavefunctions are necessary. Several methods have
been used for calculating the nuclear wavefunctions, and currently the obtained
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nuclear matrix elements are distributed in the range of a factor of 2−3 [6]. This
is the most serious problem in the theoretical part of the 0νββ-decay approach
for determining the effective neutrino mass.

The purpose of this study is to improve the reliability of the method using
the quasiparticle random-phase approximation (QRPA). Two decay paths are
considered; one is the original ββ-decay path, and another one is the virtual
decay path with the two-particle transfer. The latter is possible under the closure
approximation, and naturally, the agreement is necessary in the nuclear matrix
elements between the two methods. Fulfillment of this condition improves the
reliability of the QRPA approach. The detail of this study is found in Ref. [7];
this paper is a brief report.

2 Nuclear Matrix Element and Two Decay Paths

The matrix element of the 0νββ decay M (0ν) is calculated by, e.g. [8],

M (0ν) =
∑

Kπ

∑

aKπF aKπI

∑

αα′:p

∑

ββ′:n

〈−αα′|Ô(0ν)|β − β′〉

× 〈F |cβc†−α|aKπF 〉〈aKπF |aKπI 〉〈aKπI |c†α′c−β′ |I〉, (1)

where Ô(0ν) is the operator causing the 0νββ decay defined by

Ô(0ν) = h+(r12, Ē){−σ(1) · σ(2) + g2V /g
2
A}τ+(1)τ+(2). (2)

h+(r12, Ē) is the neutrino potential, which is a function of the inter nucleon
distance r12 and the average energy Ē used in the closure approximation. The
vector symbol σ is the Pauli spin operator, and its arguments 1 and 2 distinguish
the nucleons on which the operator acts. Parameters gV and gA are the vector
and axial-vector current coupling constants, respectively. Symbols α and α′ (β
and β′) stand for the protons (neutrons). Their creation and annihilation opera-
tors are written as c†α and cβ . The notation of−α indicates that the z component
of the nucleon angular momentum has the sign opposite to that of α. |I〉 and |F 〉
are the initial and final states, that is, the ground states of the parent and daughter
nuclei. States |aKπF 〉 and |aKπI 〉 are the intermediate states of the 0νββ decay,
and they are obtained by the proton-neutron (pn) QRPA calculation on the basis
of the initial or final states. K and π are the z component of the nuclear angu-
lar momentum and parity, respectively. Note that |aKπI 〉 6= |aKπF 〉 because the
QRPA is an approximation. The overlap 〈aKπF |aKπI 〉 is calculated according to
the method developed in Ref. [9].

The intermediate-state dependence appears only in the projectors of those
states, and the summation is taken over all of those states. Thus, one can derive
the following equation:
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M
(0ν)
2p2n ≡

∑

Kπ

∑

mKπF mKπI

∑

αα′:p

∑

ββ′:n

〈−αα|Ô(0ν)|β − β′〉

×〈F |c†−αc†α′ |mKπ
F 〉〈mKπ

F |mKπ
I 〉〈mKπ

I |cβc−β′ |I〉
= M (0ν). (3)

This equation indicates that the virtual decay path is used in which two neutrons
are removed, and then two protons are added. The like-particle (lp) QRPA is
used for calculating the intermediate states |mKπ

F 〉 and |mKπ
I 〉.

3 Calculation

3.1 0νββ decay

The calculation was performed for the decay of 150Nd→150Sm using the Skyrme
interaction with the parameter set SkM∗ and the contact volume pairing interac-
tion, of which the strengths were adjusted so as to fit the pairing gaps of the pro-
tons and neutrons obtained from the experimental nuclear masses by the Hartree-
Fock-Bogoliubov (HFB) calculation of the initial and final ground states. In
addition, I use the proton-neutron pairing interaction

V pair = gpnpair
T=0 δ(r1 − r2)PS=1PT=0 + gpnpair

T=1 δ(r1 − r2)PS=0PT=1, (4)

where T and S indicate the absolute values of the isospin and spin of a nucleon
pair, and PT and PS are the projectors to those specified isospin and spin pair
subspaces. Parameter gpnpair

T is the strength of the interaction. There is no proton-
neutron pairing gap in the HFB ground states of 150Nd and 150Sm. In this case,
V pair affects only the pnQRPA calculation. Therefore, the solutions of the pn
and lp QRPAs have different many-body correlations, and M (0ν) = M

(0ν)
2p2n is

not automatically guaranteed (for more detailed discussion, see Ref. [7]). By
assuming that all of the interactions except for the proton-neutron pairing one
are well established, that equivalence condition of the two paths can be used
for determining the strengths of the proton-neutron pairing interaction. This
interaction is relatively uncertain because the experimental evidence of the effect
of this interaction is not as clear as that of other interactions.

The setup of the calculation, the space size and others, is explained in detail
in Ref. [10]. I emphasize that very large single-particle spaces are used, and the
convergence of the results with respect to the dimension of those spaces has been
confirmed. The effective-operator methods often applied for the decay operator
is not used in my calculation. The result obtained using gA = 0.254 (the bare
value) and gV = 1.0 is shown in Table 1. If an effective value of gA smaller than
the bare one is used, a smaller nuclear matrix element would be obtained. The
lowest limit is unfortunately unknown because a firm theory is not yet estab-
lished for determining the effective gA. The value of the proton-neutron pairing
interaction used for getting 3.697 is gpnpair

T=0 = −197.44, and gpnpair
T=1 was omitted.
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Table 1. M (0ν) and M (0ν)
2p2n for 150Nd→150Sm

Equation and interaction Nuclear matrix element

M
(0ν)
2p2n without V pnpair 5.324
M

(0ν)
2p2n with V pnpair 3.697

M (0ν) 3.604

There is an argument that the latter should be determined so as to retrieve the
isospin symmetry. In my calculation, the breaking of the isospin symmetry is
not significant (see next section). That gpnpair

T=0 value is actually the average of the
proton and neutron (like-particle) pairing interactions. If the mechanism caus-
ing the proton-neutron and like-particle pairing correlations is not completely
different, the similarity of the gpnpair

T=0 and strengths of the like-particle pairing in-
teractions is not surprising. The values of the nuclear matrix elements calculated
by other groups are shown in Table 2. Our value is close to the largest one by
the pnQRPA approach of other groups.

Table 2. Nuclear matrix element of the 0νββ decay of 150Nd→150Sm by other
groups. IBM-2 indicates interacting boson model-2, and GCM is the generator coor-
dinate method. The values obtained with gA = 1.25 or close to it are listed, as long as
that value is used. M (0ν) = 3.14 and 2.71 of PnQRPA (Skyrme, volume pairing) were
obtained with parameter set SkM∗ and modified SkM∗, respectively

Method 0νββ nuclear matrix element Reference

PnQRPA (CD-Bonn, G matrix) 3.34 [13]
PnQRPA (Skyrme, volume pairing) 3.14, 2.71 [14]
IBM-2 2.321 [15, 16]
Projected HFB 3.24±0.44 [17]
Energy density functional 2.190 [18]
(Gogny, GCM, projection)
Relativistic (GCM, projection) 5.60 [19]

3.2 2νββ decay

The nuclear matrix element of the two-neutrino double-β (2νββ) decay is cal-
culated using [8]

M (2ν) =
M

(2ν)
GT

µ0
− g2

V

g2
A

M
(2ν)
F

µ0F
, (5)

M
(2ν)
GT

µ0
=

∑

aKI ,a
K
F

1

µa
〈F |

∑

n

τ+(n)(−)K [σ(n)]−K |aKF 〉〈aKF |aKI 〉

× 〈aKI |
∑

n′

τ+(n′)[σ(n′)]K |I〉
{

2, K = 1,

1, K = 0,
(6)
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M
(2ν)
F

µ0F
=
∑

aI ,aF

1

µa
〈F |

∑

n

τ+(n)|aF 〉〈aF |aI〉〈aI |
∑

n′

τ+(n′)|I〉, (7)

µa =
1

mec2

{
EaK,I −

1

2
(MF +MI)

}
. (8)

The indexes n and n′ indicate the nucleons. The intermediate states of the
Gamow-Teller (GT) decay are those of K = 0 and 1 with positive parity, and
those of the Fermi (F) decay have only K = 0 and positive parity. EaK,I is the
energy of the intermediate state. MF and MI are the masses of the final and
initial states, respectively, and me is the electron mass.

Table 3. M (2ν) calculated for 150Nd→150Sm and its components. Semi-experimental
values are also shown, which were obtained from the experimental half-life [11], theoret-
ical phase-space factor [12], and gA. |K| indicates those of the intermediate states. For
K 6= 0, the components of the nuclear matrix element shown here are summations of
those for K = ±|K|

|K| M
(2ν)
GT (|K|)/µ0 M

(2ν)
F (|K|)/µ0F M (2ν)(|K|)

gA=1.254 1.000

0 0.0271 −0.0092 0.0329 0.0363
1 0.0486 0 0.0486 0.0486

M
(2ν)
GT /µ0 M

(2ν)
F /µ0F M (2ν)

Total 0.0757 −0.0092 0.0816 0.0849
Semi-exp. 0.0368 0.0579

The result of calculation is summarized in Table 3. The typical effective
gA of 1.0 is also used as reference. The calculated values of M (2ν) are 0.0816
(gA = 1.254) and 0.0849 (gA = 1.000), and they are larger than the correspond-
ing semi-experimental values by 122% and 47%, respectively; improvement is
necessary. If the isospin symmetry is conserved, the Fermi component M (2ν)

F

vanishes. The table shows that the M (2ν)
F /µ0F is−11% and−8 % of the M (2ν)

calculated with gA = 1.254 and gA = 1.000, respectively. Thus, the isospin
symmetry is not seriously broken in my calculation without special treatment.

4 Summary

In this study, I introduced a new condition for the calculation of the nuclear
matrix element of the 0νββ decay. The nuclear matrix element should not be
different between the calculation using the original ββ path and that using the
virtual two-particle-transfer path. The QRPA is an approximation choosing parts
of the many-body correlations, thus this condition is not automatically fulfilled.
The condition of the equivalence of the two paths is a constraint to the effective
interactions used in the QRPA. The most uncertain interaction used in the cal-
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culation of this study is the isoscalar proton-neutron pairing interaction, and its
strength was determined so as to fulfill that condition. The validity of this new
idea is shown by the result that the strength is not strange at all. The consistency
of the QRPA approach to the 0νββ decay was strengthened by this study. The
remaining most serious uncertainty is the effective gA as shown by the com-
parison of M (2ν) between the calculated and semi-experimental values. This
problem is difficult to solve by the QRPA alone.
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