
NUCLEAR THEORY, Vol. 35 (2016)
eds. M. Gaidarov, N. Minkov, Heron Press, Sofia

Towards Nonlinear QRPA Description of
States of Multiphonon Origin
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Abstract. We develop a new approach to describe nuclear states of multi-
phonon origin, motivated by the necessity to describe better nuclear transition of
neutrinoless double beta decay. This approach is based on extension of QRPA
using the nonlinear phonon operator. Our ultimate goal is to describe all the
mother (A,Z), intermediate (A,Z + 1) and daughter nuclear (A,Z + 2) ex-
cited states by a single QRPA system. Before that, we develop a nonlinear
QRPA within a simplistic model in order to gain better insight. The model is
equivalent to the harmonic oscillator, thus exactly solvable. We shall present a
novel method to obtain the exact solution by means of a QRPA equation with
nonlinear phonon operator formulated separately for every individual excited
state.

1 Introduction

For understanding nuclear transition phenomena like, e.g., single or double beta
decays, it is crucial to be equipped by a firm description of nuclear structure. As
the nuclei are in general systems of tens of nucleons any calculation from first
principles is hopeless, and therefore it is necessary to adopt various (often rough)
approximations. The Quasiparticle Random Phase Approximation (QRPA) is
one of those suitable methods [1–3].

The standard QRPA provides a description of highly correlated ground state
and its first excited state. Introducing phonon operator Q† = XA† − Y A the
nucleon-nucleon correlations are taken into account by means of bi-fermion op-
erator A. The phonon operator Q† creates the first excited state |1〉 from the
ground state |0〉, which in turn is annihilated by the conjugated phonon operator
Q. In order to describe higher excited states usually the multiphonon approach
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is used. Here the n-th excited state is created by act of Q†n onto |0〉. In practice
it turns out that the multiphonon approach is too naive to get realistic results.

Our work is motivated by the ambition to improve the description of states of
multiphonon origin. We present here our achievements in developing a nonlinear
extension of QRPA method. The extension is defined by a nonlinear phonon
operator Q†n which consists of terms of higher powers of A† and A and thus it is
directly able to describe higher excited states. We will refer to the new method
as QnRPA .

It is useful to test the new ideas within some exactly solvable model. For
this purpose the pn-Lipkin model [4–7] is often used which well imitates the
structure of the realistic nuclear hamiltonian. In order to simplify the calculation
the quasi boson approximation is applied, where the bi-fermion operator A is
replaced by purely boson operator B. To maximize the simplicity in this work
we study the boson hamiltonian HB with only up to quadratic terms derived
from the pn-Lipkin model.

First, we will demonstrate that the model is equivalent to the harmonic os-
cillator and we will present the exact solution. Second, we will show that within
this particular model, actually, the multiphonon QRPA approach provides exact
solution, which is not the case within more realistic models. We will demonstrate
the equivalence of the harmonic oscillator and multiphonon QRPA approaches.
Third, we will define the new method QnRPA and exactly solve the HB model
for the third time. The QnRPA will offer a nice insight into the realm of nonlin-
ear phonon operators. We will an outlook towards more realistic application of
the QnRPA .

2 The Model

Throughout this paper we will present our achievements within the simplistic
model defined by

HB = (2ε+ λ1)B†B + λ2(B†B† +BB) , (1)

where the operatorsB† andB are creation and annihilation boson operator satis-
fying the algebra [B,B†] = 1. The coefficient ε is a single quasiparticle energy.
The coupling constants λ1 and λ2 are related to the coupling constants χ′ and κ′

of the original pn-Lipkin schematic model, see e.g. [5], via

λ1 = 2[χ′(u2
pv

2
n + v2

pu
2
n)− κ′(u2

pu
2
n + v2

pv
2
n)] , (2)

λ2 = 2(χ′ + κ′)upvpunvn , (3)

where up,n =
√
Np,n/2Ω and vp,n =

√
1−Np,n/2Ω (Np,n are numbers of

protons and neutrons) comes from the Bogoliubov-Valatin transformation of nu-
cleon creation and annihilation operators from the particle into the quasiparticle
basis. The schematic model is restricted to the spaces of single-particle states
associated with the proton and neutron systems from just a single j-shell with a
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semidegeneracy Ω ≡ j + 1/2. The simplistic model (1) is derived from the pn-
Lipkin model via several approximating steps. After neglecting the scattering
terms the hamiltonian acquires the exactly solvable form [5]

HF = εC + λ1A
†A+ λ2(A†A† +AA) , (4)

where the operators C and A† are the number (proton and neutron) and proton-
neutron pair quasiparticle operators, C ≡∑m(a†pmapm + a†nmanm), and A† ≡
[a†pa

†
n]00, where ap and an are proton and neutron quasiparticle operators which

annihilate the nuclear BCS vacuum |〉, hence also the operator A annihilates the
BCS vacuum, A |〉 = 0.

The hamiltonian HB is obtained from HF by means of the Marumori boson
mapping. In the limit of Ω→∞ we get rid of the anharmonic terms, and arrive
to the harmonic HB (1). In this paper we study the model defined by HB even
for finite Ω.

3 The Diagonalization of Hamiltonian

3.1 Fermionic hamiltonain

Thanks to the Pauli exclusion principle the fermion model HF has a finite num-
ber 2Ω of excited states. Exact solution may be found by diagonalization of
(2Ω + 1)× (2Ω + 1) matrix 〈n′F |HF |nF 〉, whose elements are evaluated in the
orthonormal basis of states |nF 〉 ∝ A†nF |〉, nF = 0, . . . , 2Ω. The energies En
are shown in Figure 1. The eigenstates |n〉, n = 0, . . . , 2Ω, are then the linear
combinations of basis states |nF 〉, provided that HB does not allow to mix even
and odd basis states |nF 〉, thus the even (odd) eigenstates |n〉 are mixture of the
even (odd) basis states only.

3.2 Bosonic hamiltonain

The bosonic model has an infinite number of states as no exclusion principle
works for bosons. However, in order to keep the model as an approximation of
the fermionic model, one can truncate the tower of states also at the same level
of 2Ω + 1 states. It is, however, useful to study the behavior of the model in
dependence on the number of excited states considered denoted as nmax, and
also to study the exact solution of the bosonic model with whole infinite tower
of states.

The diagonalization of the hamiltonian matrix 〈n′B |HB |nB〉 can be per-
formed in the basis of states |nB〉 ∝ B†nB |〉, nB = 0, . . . , nmax. By the symbol
|〉 we denote the bosonic analogue of the BCS vacuum, which is annihilated by
the boson operator B |〉 = 0.

In Figure 1 we show the comparison of the energy levels of the bosonic and
fermionic model. One can appreciate how the energy levels of the bosonic model
converge to the exact solution with increasing nmax. In the following we will
consider only the bosonic model HB with nmax =∞.
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Figure 1. Dependence of energy levels En on κ′ for Np = 4, Nn = 6, j = 9/2,
Ω = 5, and ε = 1 MeV. The exact solutions for fermionic model HF and bosonic
model HB (which is equivalent to harmonic oscillator HO) are compared to solutions
from diagonalization of HB with a truncated state basis above nmax-th state.

4 Harmonic Oscillator Solution

Contrary to the diagonalization method, in this section we derive an exact so-
lution of the bosonic model HB , due to considering full tower of boson states,
nmax =∞.

We make use of the fact, that HB describes a harmonic oscillator. Indeed,
by transforming the boson creation and annihilation operators into the operators
q = (B†+B)/

√
2, p = i(B†−B)/

√
2, we come to the hamiltonian of harmonic

oscillator (up to the irrelevant constant term)

HB =
p2

2m
+

1

2
mω2q2 − (2ε+ λ1) , (5)

where [q, p] = i and

1

m
= (2ε+ λ1 − 2λ2) and mω2 = (2ε+ λ1 + 2λ2) . (6)

The text-book solution of the harmonic oscillator tells us that the frequency ω is
the quantum of energy and the energy spectrum is equidistant and given as

En − E0 = nE , where E = ω =
√

(2ε+ λ1)2 − 4λ2
2 , (7)
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as it is seen in Figure 1. It is also well know that the hamiltonian of harmonic
oscillator can be rewritten as HB = (a†a + 1

2 )ω by means of creation and
annihilation operators, which fulfil commutation relation [a, a†] = 1 and |1〉 =
a† |0〉, 0 = a |0〉. In terms of the original operators B and B† we can express

a† = XHOB
† − YHOB , (8)

where

XHO =
1

2

1 +mω√
mω

=
2ε+ λ1 + E√

2E
√

2ε+ λ1 + E
, (9a)

YHO =
1

2

1−mω√
mω

=
−2λ2√

2E
√

2ε+ λ1 + E
, (9b)

and X2
HO − Y 2

HO = 1. This representation of the creation operator a† is impor-
tant for comparison of the harmonic oscillator solution with the solution of the
standard QRPA, which we are going to discuss in the next section.

5 Standard QRPA and Multiphonon Solution

Within QRPA approach one introduces the phonon operator in the form which
is linear in B† and B

Q†1 = X1B
† − Y1B , (10)

where X1 and Y1 are called forward- and backward-going free variational am-
plitudes. The phonon operator creates the first excited state |1〉 = Q†1 |0〉 from
the RPA ground state |0〉, for which one assumes the Ansatz

|0〉 = N edB
†B† |〉 , where N 2 =

√
1− 4d2 . (11)

The ground state parameter d can be determined from the condition

0
!
= Q1 |0〉 = N edB

†B†(2dX1 − Y1)B† |〉 (12)

as
d =

1

2

Y1

X1
. (13)

The variational amplitudes X1 and Y1 satisfy the QRPA equation
(
A1 B1

B1 A1

)(
X1

Y1

)
= E

(
1 0
0 −1

)(
X1

Y1

)
, (14)

where

A1 = 〈0| [B, [HF , B
†]] |0〉 = 2ε+ λ1 (15a)

B1 = −〈0| [B, [HF , B]] |0〉 = 2λ2 . (15b)
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The solution (on the right) is obtained by plugging the expressions for A1 and
B1 (15) into the formal solution (on the left)

E =
√
A2

1 − B2
1 → E =

√
(2ε+ λ1)2 − 4λ2

2 , (16a)

X1 =
A1 + E√

(A1 + E)2 − B2
1

→ X1 =
2ε+ λ1 + E√

2E
√

2ε+ λ1 + E
, (16b)

Y1 =
−B1√

(A1 + E)2 − B2
1

→ Y1 =
−2λ2√

2E
√

2ε+ λ1 + E
. (16c)

which exactly coincides with the harmonic oscillator solution (7) and (9). The
RPA amplitudes fulfil completeness and orthogonality relation

X2
1 − Y 2

1 = 1 , (17)

hence [Q1, Q
†
1] = 1. The coefficient of ground state (13) is analytically deter-

mined as

d = − (2ε+ λ1)− E
4λ2

. (18)

5.1 States of multiphonon origin

The solution of the QRPA equation leads to the phonon operator Q†1 which co-
incides with the harmonic oscillator creation operator a†. Then the hamiltonian
can be rewritten as HB = EQ†1Q1 up to an irrelevant constant term, which has
the standard harmonic oscillator solution

En − E0 = nE and |n〉 =
1√
n!
Q†n1 |0〉 . (19)

This is nothing but the multiphonon approach within standard QRPA. Within
this simplistic model HB , which is equivalent to the harmonic oscillator, the
multiphonon approach gives the exact solution!

For later purpose, let us rewrite the states of multiphonon origin in the form

|n〉 =
1√
n!
P†n

1

Xn
1

|0〉 where P†n ≡
N∑

i=0

cifn;n−2iB
†n−2i , (20)

where the upper limit in the sum is N = n
2 for even n, and N = n−1

2 for odd n.
The f -coefficients satisfy the recurrent formula

fi;j = fi−2;j−2 + (2j + 1)fi−2;j + (j + 1)(j + 2)fi−2;j+2 , (21)

and parameter c is
c ≡ −X1Y1 . (22)

For reader’s convenience we write explicitly the first several operators Pn:

P†0 = 1 , P†1 = B† , P†2 = (B†2 + c) , P†3 = (B†3 + 3cB†) ,

P†4 = (B†4 + 6cB†2 + 3c2) .
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6 QnRPA with the Nonlinear Phonon Operators for Description of
Higher Excited States

Our goal is to define the QRPA procedure providing a QRPA equation of type
(14) for every single excited state separately, i.e., to find the form of a phonon
operator for which Q†n |0〉 = |n〉 and Qn |0〉 = 0. As the excited states |n〉
of n ≥ 2 are of multiphonon origin, the phonon operator Q†n should have a
nonlinear form

Qn = Xn(B†n + . . . )− Yn(Bn + . . . ) . (23)

In this section, we present our main achievement of finding the proper phonon
operator for all eigenstates of HB . We are going to show that the nth excited
state of the system defined byHB is excited from the ground state by the phonon
operator of the form

Q†n = XnP†n − YnPn , (24)

where Xn and Yn are corresponding forward- and backward- going free varia-
tional amplitudes. The operator Pn is defined by (20) as the operator creating
the multiphonon states. The important characteristics is that the phonon oper-
ator depends just on a single parameter c, which is related to the variational
amplitudes of the first excited state according to (22).

For the RPA ground state |0〉 we try the Ansatz in the same form as for the
standard QRPA for the first excited state (11), where we just replace parameter d
by dn, because, at least at first sight, there is no obvious reason that they should
coincide. If however by means of QRPA machinery we come to d = dn, then
we achieve the common ground state for individual QnRPA systems and their
mutual consistence.

First of all, we calculate the annihilation condition

0
!
= Qn|0〉 = Xn

N∑

k=0

Rn;kB
†n−2k)|0〉 , (25)

leading to the set of N + 1 conditions

0
!
= Rn;k ≡ −ckfn;2(n−k)(2dn)n (26)

+

k∑

i=0

fn;n−2(k−i)fn−2(k−i);n−2kc
i(2dn)n−k−i .

The solution of the k = 0 equation provides the expression for the ground state
parameter

(2dn)n =
Yn
Xn

. (27)
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This solution can be used in the rest of the equations for k > 0 in order to get
rid of Xn and Yn in favor of (2d). The k = 1 equation fixes the c parameter

c =
(2dn)

(2dn)2 − 1
. (28)

and it can be shown that this value satisfies the rest of higher polynomial equa-
tions for k > 1.

In the nonlinear case the RPA equation (14) has now little bit more compli-
cated form, because the nonzero elements of the norm matrix on the right-hand
side are given by Un ≡ 〈0| [Pn,P†n] |0〉, which are not equal to one for n > 1.
However the RPA equation can be easily brought into the standard form by di-
viding its both sides by Un. Then the elements of the matrix on the left-hand
side are

An =
〈0| [Pn, HB ,P†n] |0〉
〈0| [Pn,P†n] |0〉

= n

[
(2ε+ λ1) + 2λ2

(2dn)− (2dn)2n−1

1− (2dn)2n

]
, (29)

Bn = −〈0| [Pn, HB ,Pn] |0〉
〈0| [Pn,P†n] |0〉

= 2λ2n
(2dn)n−1 − (2dn)n+1

1− (2dn)2n
. (30)

The standard form of the RPA equation assures that the completeness and or-
thogonality relation holds in the form

X2
n − Y 2

n = 1 . (31)

The solution of the RPA equation in the standard form is given by (16).
So far, we have expressed everything in terms of the ground-state parameter

dn, which is however still unknown because its expression (27) itself depends
on dn via Xn and Yn amplitudes. Notice that the expression is different for each
n. We can however use (27) as an equation to determine dn as its root. Hence
we would like to solve the equation for dn

(2dn)n =
Yn
Xn

=
−Bn

An +
√
A2
n − B2

n

. (32)

After plugging (29) and (30) we come to the equation

0 = 2n(2dn)n−1
[
λ2 + (2ε+ λ1)(2dn) + λ2(2dn)2

]
. (33)

For n > 1, this equation has 3 solutions independent of n!

d0 = 0 , d∓ = − (2ε+ λ1)∓ E
4λ2

. (34)

Taking the solution d− as the one defining the true ground state, i.e., the one
coinciding with the solution of the standard QRPA with Q1, we can evaluate the
energy of n-th excited state as the solution of QRPA procedure:

En = n
√

(2ε+ λ1)2 − 4λ2
2 = nE , (35)
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and we can see that we are reproducing the harmonic oscillator exact solution
once again. Further, the fact that the QnRPA systems for all n are built above the
same ground state, i.e., d = dn for all n, leads to the relation

Yn
Xn

= (2d)n =
Y n1
Xn

1

, (36)

which can be used to show that also the parameter c is the same for all n and can
be expressed as

c =
(2d)

(2d)2 − 1
= −X1Y1 (37)

in accordance with (22).
We note that using the second nonzero solution of the ground state parameter

d+ leads to exactly the same energies as with the d− solution. We understand
this redundancy of multiple solutions for ground states as an effect of the fact,
that by QnRPA we are solving the solution separately for each excited state.
Only if we collect all the QnRPA solutions together, we come to a single ground
state parameter d− as the Q1 solution is unique.

7 Simultaneous QnRPA Description of More Excited States

Very important result of the previous analysis is that the individual QnRPA sys-
tems use a single common ground state |0〉 given by (11). Therefore it is possible
to describe a set of first n excited states simultaneously by a single QRPA sys-
tem. The nonlinear form of the corresponding phonon operator is

Q†6n =

n∑

i=1

Q†i =

n∑

i=1

[
XiP†i − YiPi

]
. (38)

In fact, it can be shown that one has a great freedom in choosing the form of the
Q†6n phonon operator. Instead of the operatorsPi one can use other polynomials
of B. The RPA equation is in general case rather complicated given in terms of
2n×2nmatrices. However after transforming the phonon operator into the form
of (38) it can be shown that the RPA equation breaks to a decoupled equations
for individual excited states, i.e., the RPA matrices get a (2× 2)-block-diagonal
form.

8 Conclusions

Our main goal is to describe better the nuclear structure related to double beta
decay. The QRPA method is one of the commonly used.

In our work we are trying to explore the realm of the QRPA extension with
nonlinear phonon operator in order to describe better the states of multiphonon
origin. For the first stage we have chosen the simple model derived from the
pn-Lipkin model after the quasi-boson approximation, which we show to be
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equivalent to the harmonic oscillator. The simplicity of the model enables us
to reach its exact solution. We demonstrate that the exact solution can be fully
reproduced by means of nonlinear QRPA method. Actually, one can say that we
present a novel way to solve the harmonic oscillator, which might be interesting
result per se. We formulate a QRPA system for each excited state individually.
While the first excited state is reproduced exactly by standard QRPA with linear
phonon operator, the higher excited states requires nonlinear phonon operators.
That qualifies the nonlinear phonon operator approach to be relevant and sem-
inal. At the end we shortly discuss the availability of the QRPA systems for
simultaneous description of more excited states by a single common phonon
operator.

Of course, our ultimate goal is to formulate the extension of the QRPA
method for the realistic model and update the database of theoretical predic-
tions for double beta decay nuclear matrix elements. Before that we plan to
apply the nonlinear phonon definitions onto more complicated but still exactly
solvable models, like pn-Lipkin model given by HF (4), or like-particle Lipkin
model [4, 8].
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