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Abstract. An approximate SU(3) symmetry appears in heavy deformed even-
even nuclei. In each nuclear shell with N ≥ 3, due to the spin orbit inter-
action, one set of orbitals has escaped to the lower shell and another has in-
truded from the upper shell. There is an one-to-one correspondence between the
orbitals of the two sets, based on pairs of orbitals which have identical quan-
tum numbers of orbital angular momentum, spin, and total angular momen-
tum, but different size. Such relevant orbitals have Nilsson number differences
∆K[∆N∆nz∆Λ] = 0[110]. By omitting the intruder Nilsson orbital of high-
est total angular momentum and replacing the rest of the intruder orbitals by
their relevant counterparts, an approximate SU(3) symmetry is reconstructed.
The accuracy of this approximation is tested through calculations in the frame-
work of the Nilsson model in the asymptotic limit of large deformations, tak-
ing into account the changes in the selection rules and in the avoided crossings
caused by the opposite parity of the substitutes with respect to the substituted
orbitals.

1 Introduction

The relation of SU(3) symmetry to nuclear deformation has been uncovered by
J. P. Elliott [1, 2] in the sd shell nuclei, in which its microscopic origin has been
demonstrated. The SU(3) also appears in the framework of the microscopic
symplectic model [3], which can be seen as a generalization of the Elliott SU(3)
scheme to more than one nuclear shells. Since then the SU(3) symmetry has
been used in the framework of many phenomenological nuclear models, includ-
ing the interacting boson model (IBM) [4], the fermion dynamical symmetry
model (FDSM) [5], and the interacting vector boson model (IVBM) [6], for the
description of heavy nuclei, in which the Elliott SU(3) symmetry is known to
be broken by the strong spin-orbit interaction, making it necessary to abandon
the LS coupling scheme in favor of the jj coupling scheme [7]. In addition, an
approximate pseudo-SU(3) symmetry has been used in heavy nuclei, based on
a relabelling of the normal parity orbitals only, using quantum numbers corre-
sponding to the next lower major nuclear shell [8–11], being realized later that
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the pseudospin symmetry appears as a relativistic symmetry [12]. Furthermore,
a quasi-SU(3) symmetry has been introduced [13, 14], based on the smallness
of ∆j = 1 matrix elements of the quadrupole operator in comparison to the
∆j = 2 ones, leading to an approximate restoration of LS coupling in heavy
nuclei.

On the other hand, the Nilsson model [15–17], despite its simplicity, being
a harmonic oscillator with cylindrical symmetry supplied with a spin-orbit term
and an angular momentum squared term, has been very successful in describ-
ing in detail many properties of heavy deformed nuclei. For large deformations,
its wave functions reach an asymptotic limit, in which the number of oscillator
quanta, N , the number of quanta along the cylindrical symmetry axis, nz , and
the projections of the orbital angular momentum, Λ, and of the spin, Σ, along
the symmetry axis become good quantum numbers, remaining so even at in-
termediate deformation values [16]. As a consequence, Nilsson states for even
nuclei are labelled by K[NnzΛ], where K = Λ+Σ is the projection of the total
angular momentum along the symmetry axis.

As remarked by Ben Mottelson [18] on the occasion of the 50th anniversary
of the Nilsson model, the asymptotic quantum numbers of the Nilsson model
can be seen as a generalization of Elliott’s SU(3), applicable to heavy deformed
nuclei. Working along this line, we demonstrate in the present manuscript that
a hidden approximate SU(3) symmetry of the Elliott type can be uncovered in
heavy deformed nuclei. In order to achieve this, we take advantage of the largely
overlapping ∆K[∆N∆nz∆Λ] = 0[110] pairs, which have been found to play
a key role in the development of nuclear deformation within a different context
[19–21]. The steps taken are listed here, using a specific example.

1) The 50-82 nuclear shell consists of the 3s1/2, 2d3/2, 2d5/2, and 1g7/2
orbitals, which are the pieces of the full sdg shell remaining after the spin-orbit
force lowering of the 1g9/2 orbitals down into the 28-50 nuclear shell. In ad-
dition, it contains the 1h11/2 orbitals, lowered into it from the pfh shell by the
spin-orbit force.

2) The 1h11/2 orbital consists of the Nilsson orbitals 1/2[550], 3/2[541],
5/2[532], 7/2[523], 9/2[514], and 11/2[505]. As a first step in the approximation,
in the 50-82 shell we omit the 11/2[505] orbital, i.e. the one with the highest total
angular momentum, which, as one can see in the Nilsson diagrams [15, 16], lies
at the very top of the 50-82 shell, thus its influence on the structure of the rest of
the shell is expected to be minimal.

3) The 1g9/2 orbital consists of the Nilsson orbitals 1/2[440], 3/2[431],
5/2[422], 7/2[413], 9/2[404], which are 0[110] partners of the remaining 1h11/2
Nilsson orbitals listed in 2), in the same order. A pair of 0[110] partners shares
exactly the same values of the orbital angular momentum, spin, and total angular
momentum quantum numbers, i.e. it is expected to exhibit identical behavior as
far as angular momentum related properties are concerned. This has been cor-
roborated by calculating overlaps of orbitals in Ref. [20]. One can then think of
replacing in the 50-82 shell the remaining 1h11/2 orbitals by their 1g9/2 coun-
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terparts and checking numerically the accuracy of this approximation, taking
carefully into account that during this replacement the N and nz quantum num-
bers have been changed by one unit each, while the parity has changed sign.
These changes will obviously affect the selection rules of various relevant ma-
trix elements, as well as the avoided crossings [22] in the Nilsson diagrams, as
we shall discuss in more detail below.

4) After these two approximations have been made, we are left with a collec-
tion of orbitals which is exactly the one of the full sdg shell. The sdg shell of the
spherical harmonic oscillator is known to possess the U(15) symmetry, having
an SU(3) subalgebra [23], therefore we can expect that some of the SU(3) fea-
tures would appear within the approximate scheme. Of course one should bear
in mind that in axially symmetric deformed nuclei the relevant symmetry is not
spherical, but cylindrical [24]. Therefore the relevant algebras are not U(N) Lie
algebras, but more complicated versions of deformed algebras, in which, among
the angular momentum operators, only the Lz operator has the same physical
content as the Lz operator in the Nilsson model [25–30]. Such deformed oscil-
lators with commensurate ratios of frequencies have been studied in relation to
the effect of superdeformation [31, 32], the ratio of frequencies 2:1 correspond-
ing to deformation parameter ε = 0.6 in the framework of the Nilsson model.

5) The same procedure can be applied to the 28-50, 82-126, 126-184 shells,
leading to approximate pf, pfh, sdgi shells, corresponding to U(10), U(21),
U(28) algebras having SU(3) subalgebras (see [23] and references therein).

6) Concerning level crossings, it should be remembered that orbits with dif-
ferent quantum numbers and/or parity do not interact, while in the case of iden-
tical angular momentum and parity, avoided crossings [22] appear, if the size of
the relevant interaction matrix elements is small, as it is the case in the approxi-
mate scheme considered here, as we shall show in detail below. As a result, one
major source of changes comes from the fact that in a nuclear shell the intruder
levels do not interact with the normal parity levels, while the substitutes of the
intruder levels will interact with the normal parity levels, if they have the same
angular momentum. We shall show in the next section that the relevant addi-
tional non-vanishing matrix elements appearing in the latter case are few and
small, thus influencing the Nilsson level schemes very little, without affecting
their major features.

It should be noted that although the discussion above regards the description
of even-even nuclei in the framework of Lie algebras, it has been found [33] that
for odd nuclei a correspondence exists between the Nilsson scheme and the level
scheme of odd nuclei described in the framework of the SU(3) symmetry limit
of the U(6/12) symmetry of the interacting boson fermion model [34].

2 The Nilsson Hamiltonian for large deformations

The Nilsson single particle Hamiltonian [15, 16] reads

H = Hosc + vls~ω0(l · s) + vll~ω0(l2 − 〈l2〉N ), (1)
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where

Hosc =
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is the Hamiltonian of a harmonic oscillator with cylindrical symmetry,
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2
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is the average of the square of the angular momentum l within the N th oscil-
lator shell, M is the nuclear mass, s is the spin, p is the momentum, while the
rotational frequencies ωz and ω⊥ are related to the deformation parameter ε by
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leading to

ε =
ω⊥ − ωz
ω0

, (5)

with ε > 0 corresponding to prolate shapes and ε < 0 corresponding to oblate
shapes The standard values of the constants vls and vll, determined from the
available data on intrinsic nuclear spectra are reported, for example, in [35].

For large deformations, the asymptotic wave functions |NnzΛΣ〉 are used
[15, 16], where N is the total number of oscillator quanta, nz is the number of
the oscillator quanta along the z-axis, Λ is the z-projection of the orbital angular
momentum, and Σ is the z-projection of the spin. Nilsson orbitals in even-even
nuclei are then denoted by K[NnzΛ], where K is the projection of the total
angular momentum on the z-axis, with K = Λ + Σ. The eigenvalues of Hosc in
this basis are

Eosc = ~ω0

(
N +

3

2
− 1

3
ε(3nz −N)

)
. (6)

Taking advantage of the cylindrical symmetry, one can define creation and
annihilation operators [16, 36]

R+ =
1√
2

(a†x + ia†y), R =
1√
2

(ax − iay),

S+ =
1√
2

(a†x − ia†y), S =
1√
2

(ax + iay),

(7)

satisfying the commutation relations

[R,R†] = [S, S†] = 1, (8)

thus going over to a |nzrsΣ〉 basis, where r is the number of quanta related
to the harmonic oscillator formed by R† and R, and s is the number of quanta
related to the harmonic oscillator formed by S† and S, for which

n⊥ = r + s = N − nz, Λ = r − s (9)
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hold, where n⊥ is the number of quanta perpendicular to the z-axis. It is then a
straightforward task [16] to calculate the matrix elements of the l · s and l2 oper-
ators in the new basis. Explicit results are given in Ref. [16] in a |nzn⊥ΛΣ〉 no-
tation. Additional results for matrix elements in various notations can be found
in Refs. [37–39].

The correspondence between states in the |nzrsΣ〉 basis and the standard
Nilsson orbitalsK[NnzΛ] can be easily obtained using Eq. (9) andK = Λ+Σ.
As an example, the final results for the matrix elements of l · s for the 28-50 and
pf shells are given in Tables 1 and 2, in which the 1g9/2 levels appearing in Table
1 have been replaced by the 1f7/2 levels in Table 2. It should be remembered that
these matrix elements, as well as the matrix elements of l2, are independent from
the deformation, since the effects of the deformation on them are neglected [35],
due to the fact that the l ·s and l2 terms are already relatively small perturbations

Table 1. Matrix elements l · s for Nilsson orbitals in the 28–50 shell
1
2

[301] 1
2

[321] 3
2

[312] 1
2

[310] 3
2

[301] 5
2

[303] 1
2

[440] 3
2

[431] 5
2

[422] 7
2

[413] 9
2
[404]

1/2[301] −0.5 0 0 −1 0 0 0 0 0 0
1/2[321] 0 −0.5 0 1 0 0 0 0 0 0 0
3/2[312] 0 0 −1 0 0.707 0 0 0 0 0 0
1/2[310] −1 1 0 0 0 0 0 0 0 0 0
3/2[301] 0 0 0.707 0 0.5 0 0 0 0 0 0
5/2[303] 0 0 0 0 0 −1.5 0 0 0 0 0

1/2[440] 0 0 0 0 0 0 0 0 0 0 0
3/2[431] 0 0 0 0 0 0 0 0.5 0 0 0
5/2[422] 0 0 0 0 0 0 0 0 1 0 0
7/2[413] 0 0 0 0 0 0 0 0 0 1.5 0
9/2[404] 0 0 0 0 0 0 0 0 0 0 2

Table 2. l · s matrix elements for Nilsson orbitals in the pf shell.

1
2

[301] 1
2

[321] 3
2

[312] 1
2

[310] 3
2

[301] 5
2

[303] 1
2

[330] 3
2

[321] 5
2

[312] 7
2

[303]

1/2[301] −0.5 0 0 −1 0 0 0 0 0
1/2[321] 0 −0.5 0 1 0 0 −1.225 0 0 0
3/2[312] 0 0 −1 0 0.707 0 0 −1.414 0 0
1/2[310] −1 1 0 0 0 0 0 0 0 0
3/2[301] 0 0 0.707 0 0.5 0 0 0 0 0
5/2[303] 0 0 0 0 0 −1.5 0 0 −1.225 0

1/2[330] 0 −1.225 0 0 0 0 0 0 0 0
3/2[321] 0 0 −1.414 0 0 0 0 0.5 0 0
5/2[312] 0 0 0 0 0 −1.225 0 0 1 0
7/2[303] 0 0 0 0 0 0 0 0 0 1.5
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of the oscillator potential. Results for higher shells will be published elsewhere
[40].

The calculation of the energy eigenvalues of the full Hamiltonian becomes
then a simple task of diagonalization of a matrix in which the diagonal matrix
elements depend on the deformation, as given in Eq. (6), while the non-diagonal
matrix elements remain invariant. Concerning the substitutes of the intruder
1g9/2 parity orbitals, coming from the 1f7/2 shell, in order to be brought to
the place of the orbitals which they are going to substitute, they are uniformly
pushed up by 1 − 2ε/3, as implied by Eq. (6), since both N and nz have to be
increased by one unit. As an example, numerical results for ε = 0.3 are given for
the 28-50 and pf shells in Tables 3 and 4. Results for higher shells and varying
ε will be published elsewhere [40]. Since the results have been obtained by
using the asymptotic wave functions, they are expected to be reliable for large

Table 3. H matrix elements for ε = 0.3 and uls = −0.16 [35] for Nilsson orbitals in the
28–50 shell.

1
2

[301] 1
2

[321] 3
2

[312] 1
2

[310] 3
2

[301] 5
2

[303] 1
2

[440] 3
2

[431] 5
2

[422] 7
2

[413] 9
2
[404]

1/2[301] 4.88 0 0 0.16 0 0 0 0 0 0
1/2[321] 0 4.28 0 −0.16 0 0 0 0 0 0 0
3/2[312] 0 0 4.66 0 −0.113 0 0 0 0 0 0
1/2[310] 0.16 −0.16 0 4.50 0 0 0 0 0 0 0
3/2[301] 0 0 −0.113 0 4.72 0 0 0 0 0 0
5/2[303] 0 0 0 0 0 5.04 0 0 0 0 0

1/2[440] 0 0 0 0 0 0 4.70 0 0 0 0
3/2[431] 0 0 0 0 0 0 0 4.92 0 0 0
5/2[422] 0 0 0 0 0 0 0 0 5.14 0 0
7/2[413] 0 0 0 0 0 0 0 0 0 5.36 0
9/2[404] 0 0 0 0 0 0 0 0 0 0 5.58

Table 4. H matrix elements for ε = 0.3 and uls = −0.16 [35] for Nilsson orbitals in the
pf shell.

1
2

[301] 1
2

[321] 3
2

[312] 1
2

[310] 3
2

[301] 5
2

[303] 1
2

[330] 3
2

[321] 5
2

[312] 7
2

[303]

1/2[301] 4.88 0 0 0.16 0 0 0 0 0
1/2[321] 0 4.28 0 −0.16 0 0 0.196 0 0 0
3/2[312] 0 0 4.66 0 −0.113 0 0 0.226 0 0
1/2[310] 0.16 −0.16 0 4.50 0 0 0 0 0 0
3/2[301] 0 0 −0.113 0 4.72 0 0 0 0 0
5/2[303] 0 0 0 0 0 5.04 0 0 0.196 0

1/2[330] 0 0.196 0 0 0 0 4.70 0 0 0
3/2[321] 0 0 0.226 0 0 0 0 4.92 0 0
5/2[312] 0 0 0 0 0 0.196 0 0 5.14 0
7/2[303] 0 0 0 0 0 0 0 0 0 5.36
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and moderate deformations [16], but they are expected to fail completely for
ε ≤ 0.1, where different approximate wave functions, providing different slopes
of the energy levels as a function of ε, are appropriate [16, 35].

3 Discussion

3.1 The l · s and l2 matrix elements

In Table 1 the matrix elements of the spin-orbit term in the 28–50 shell are
shown, in order to be compared to the relevant matrix elements appearing in the
full pf shell, seen in Table 2, occurring after replacing the 1g9/2 levels of the
28–50 shell (the last 5 levels in the rows and columns of Table 1) by their 0[110]
counterparts of the 1f7/2 levels (the last 4 levels in the rows and columns of
Table 2). Each table is divided into four blocks by straight lines. The following
comments apply.

1) Table 1 has one more column (the last one) and one more row (the last
one) than Table 2, since the 9/2[404] level of the 28-50 shell has no 0[110]
counterpart in the pf shell.

2) The upper left blocks of the two tables are obviously identical, since they
refer to the same set of states.

3) The lower right blocks of the two tables are identical, since the 0[110]
pairs possess the same orbital angular momentum and spin quantum numbers,
taking also into account that the last level of 1g9/2, 9/2[404], has no counterpart
in 1f7/2.

4) The lower left block and the upper right block in Table 1 are “empty”,
since all matrix elements vanish (because they connect states with different
parity, while the l · s interaction is parity invariant), while in Table 2 a few
non-vanishing matrix elements (3 out of 24 in each block) appear. These non-
vanishing matrix elements represent the “damage” made by the approximation
imposed.

The same comments apply to the spin-orbit matrix elements appearing in
higher shells, to be shown elsewhere [40]. One can see that the percentage of
matrix elements “damaged” by the approximation drops with increasing shell
size.

Qualitatively similar results are obtained in the case of the matrix elements
of the l2 operator, to be shown elsewhere [40], since no l2 term is used in the
28–50 and pf shells.

3.2 Matrix elements of the full Hamiltonian

In order to get a feeling of the number and magnitude of “damaged” matrix ele-
ments of the full Hamiltonian, we present results for the special case of ε = 0.3
In the pf shell, shown in Table 4, six out of 100 matrix elements are “damaged”,
in comparison to the 28–50 shell, shown in Table 3.
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Results for higher shells and for varying ε will be shown elsewhere [40]. In
all cases the numerical values of the diagonal matrix elements are at least one
order of magnitude larger than the numerical values of the non-diagonal matrix
elements.

In conclusion, it can be shown that in all shells the changes inflicted on the
Nilsson diagrams by the replacement of the intruder parity orbitals with their
0[110] counterparts do not change the main features of the diagrams (relevant
figures will be shown elsewhere [40]). It can therefore be expected that several
physical properties of the relevant heavy deformed nuclei could be correctly
determined in the framework of the uncovered approximate SU(3) symmetry.

3.3 Comparison with the pseudo-SU(3) scheme

A detailed comparison between the present approximate SU(3) symmetry and
the pseudo-SU(3) scheme can be carried out by considering in detail Table 5.
Several comments apply.

1) In the pseudo-SU(3) scheme the intruder parity orbitals remain intact,
while in our scheme the normal parity orbitals remain intact.

2) In the pseudo-SU(3) scheme all normal parity orbitals are replaced by
pseudo-SU(3) counterparts. In our scheme, all but one (the one with the highest
total angular momentum) of the intruder parity orbitals are replaced by 0[110]
counterparts.

3) During the pseudo-SU(3) replacement, N is reduced by one unit, nz re-
mains intact, and Λ is also changed by one unit, either increasing or decreasing,
but in both cases resulting in the inversion of the spin, i.e. in the change of the
sign of Σ. In our scheme, N and nz are reduced by one unit, but the quantum
numbers related to angular momenta, Λ and Σ, remain intact. The total angu-
lar momentum K remains intact in both cases. It is clear that in the present
scheme all properties dependent on angular momenta will be unaffected, some-
thing which is not a priori guaranteed within the pseudo-SU(3) scheme.

4) The result of the replacement in the case of the pseudo-SU(3) scheme
is that the normal parity levels are replaced by a new set of levels, forming
a complete harmonic oscillator shell with N reduced by one unit, obeying the
relevant harmonic oscillator symmetry, while all the intruder parity levels remain
alone, without obeying any harmonic oscillator symmetry. In our scheme, the
result of the replacement is that the normal parity levels and the substitutes of
the intruder parity levels form together a harmonic oscillator shell with quantum
number N , while only one two-particles orbital, the highest lying one, remains
alone and is ignored.

5) As far as parity is concerned, in the pseudo-SU(3) scheme the normal
parity levels are lowered by one unit of N , ending up with the N − 1 oscillator
quantum number, while the intruder parity orbitals preserve their N + 1 quan-
tum number, the net result being that the parity of the normal levels is inverted
and that in the final set we have states belonging to two different values of the
oscillator quantum number, N − 1 and N + 1, sharing the same parity. In con-
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Table 5. Levels appearing in the various major shells in the framework of the Nilsson
model [15,16] (labelled by the size of the shell), in the present approximate SU(3) scheme
(labelled by “present”), and in the pseudo-SU(3) scheme [8, 9] (labelled by “pseudo”).
The orbitals been approximated in the last two cases are indicated by boldface.

28-50 present pseudo 82-126 present pseudo 126-184 present pseudo
1/2[301] 1/2[301] 1/2[220] 1/2[501] 1/2[501] 1/2[400] 1/2[611] 1/2[611] 1/2[510]
1/2[321] 1/2[321] 1/2[220] 1/2[521] 1/2[521] 1/2[420] 1/2[600] 1/2[600] 1/2[501]
3/2[312] 3/2[312] 3/2[211] 3/2[512] 3/2[512] 3/2[411] 3/2[602] 3/2[602] 3/2[501]
1/2[310] 1/2[310] 1/2[211] 1/2[510] 1/2[510] 1/2[411] 1/2[631] 1/2[631] 1/2[530]
3/2[301] 3/2[301] 3/2[202] 3/2[501] 3/2[501] 3/2[402] 3/2[622] 3/2[622] 3/2[521]
5/2[303] 5/2[303] 5/2[202] 5/2[503] 5/2[503] 5/2[402] 5/2[613] 5/2[613] 5/2[512]
1/2[440] 1/2[330] 1/2[440] 1/2[541] 1/2[541] 1/2[440] 1/2[620] 1/2[620] 1/2[521]
3/2[431] 3/2[321] 3/2[431] 3/2[532] 3/2[532] 3/2[431] 3/2[611] 3/2[611] 3/2[512]
5/2[422] 5/2[312] 5/2[422] 5/2[523] 5/2[523] 5/2[422] 5/2[602] 5/2[602] 5/2[503]
7/2[413] 7/2[303] 7/2[413] 7/2[514] 7/2[514] 7/2[413] 7/2[604] 7/2[604] 7/2[503]
9/2[404] 9/2[404] 1/2[530] 1/2[530] 1/2[431] 1/2[651] 1/2[651] 1/2[550]

50-82 present pseudo 3/2[521] 3/2[521] 3/2[422] 3/2[642] 3/2[642] 3/2[541]
1/2[400] 1/2[400] 1/2[301] 5/2[512] 5/2[512] 5/2[413] 5/2[633] 5/2[633] 5/2[532]
1/2[411] 1/2[411] 1/2[310] 7/2[503] 7/2[503] 7/2[404] 7/2[624] 7/2[624] 7/2[523]
3/2[402] 3/2[402] 3/2[301] 9/2[505] 9/2[505] 9/2[404] 9/2[615] 9/2[615] 9/2[514]
1/2[420] 1/2[420] 1/2[321] 1/2[660] 1/2[550] 1/2[660] 1/2[640] 1/2[640] 1/2[541]
3/2[411] 3/2[411] 3/2[312] 3/2[651] 3/2[541] 3/2[651] 3/2[631] 3/2[631] 3/2[532]
5/2[402] 5/2[402] 5/2[303] 5/2[642] 5/2[532] 5/2[642] 5/2[622] 5/2[622] 5/2[523]
1/2[431] 1/2[431] 1/2[330] 7/2[633] 7/2[523] 7/2[633] 7/2[613] 7/2[613] 7/2[514]
3/2[422] 3/2[422] 3/2[321] 9/2[624] 9/2[514] 9/2[624] 9/2[604] 9/2[604] 9/2[505]
5/2[413] 5/2[413] 5/2[312] 11/2[615]11/2[505]11/2[615]11/2[606]11/2[606]11/2[505]
7/2[404] 7/2[404] 7/2[303] 13/2[606] 13/2[606] 1/2[770] 1/2[660] 1/2[770]
1/2[550] 1/2[440] 1/2[550] 3/2[761] 3/2[651] 3/2[761]
3/2[541] 3/2[431] 3/2[541] 5/2[752] 5/2[642] 5/2[752]
5/2[532] 5/2[422] 5/2[532] 7/2[743] 7/2[633] 7/2[743]
7/2[523] 7/2[413] 7/2[523] 9/2[734] 9/2[624] 9/2[734]
9/2[514] 9/2[404] 9/2[514] 11/2[725]11/2[615]11/2[725]
11/2[505] 11/2[505] 13/2[716]13/2[606]13/2[716]

15/2[707] 15/2[707]

trast, in the present scheme the intruder parity levels are lowered from N + 1
to N , thus meeting the normal parity levels and forming a uniform set of levels
characterized by a common value of N and sharing the same parity. Thus in
matters concerning parity, one has to be equally careful within both approaches,
since the parity of some of the levels is inverted in both cases.

6) In order to proceed, in the pseudo-SU(3) scheme one has to deal with the
symmetry-obeying normal parity orbitals and the no-symmetry-obeying intruder
parity orbitals, which have to be dealt with shell model methods, while in the
present scheme one can proceed by taking into account only a set of symmetry-
obeying orbitals.
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7) An important difference is that the pseudo-SU(3) scheme is an approxi-
mation made to the levels of the Nilsson Hamiltonian at the energies at which
they are predicted to be by the Hamiltonian, thus it represents an approximation
scheme which can be used for simplified shell model calculations, while our
scheme is the analog of a Gedankenexperiment: What would have happened if
in the place of the intruder parity orbitals their 0[110] counterparts were appear-
ing? From this consideration one can only draw conclusions regarding the extent
in which the SU(3) features appear in the approximate shell, paving the way for
calculations of various physical properties within the SU(3) symmetry, for ex-
ample by appropriately modifying and simplifying the approach of Refs. [10,11]
to heavy even-even nuclei. An example of application of the approximate SU(3)
scheme will be briefly discussed in [41].

8) From Table 5 it is clear that the larger the shell, the smaller the percentage
of orbitals approximated in the present scheme, while the opposite holds in the
pseudo-SU(3) scheme, in which the larger the shell, the larger the percentage of
orbitals being affected. This fact implies that the present scheme is expected to
work best in the actinides, followed by the rare earths, while it is expected to be
less satisfactory in lower shells.

4 Conclusions

In this manuscript we propose that an approximate SU(3) symmetry appears in
heavy deformed nuclei, very similar to the Elliott SU(3) symmetry appearing in
light (sd shell) nuclei. In order to demonstrate this fact, we use a simple and
completely transparent Nilsson calculation, in which it becomes clear that the
changes inflicted by replacing in each major shell the intruder parity orbitals
by their 0[110] counterparts are small, therefore offering the basis for a reliable
approximate scheme. The main reasons behind the success of this approximation
are

1) The fact that the intruder parity orbitals have exactly the same orbital
angular momentum, spin, and total angular momentum quantum numbers as
their 0[110] substitutes.

2) The small number and small magnitude of the additional non-vanishing
spin-orbit and angular-momentum-squared matrix elements appearing because
of the approximation inflicted, which imply that the additional avoided crossings
caused by the approximation are of small size, thus not affecting drastically the
form of the Nilsson diagrams.

3)Because of 1) and 2), the real Nilsson diagrams have nearly the same struc-
ture as they would have had if the missing normal parity orbitals were present
in the place of the intruder parity orbitals, completing an oscillator major shell
with the appropriate U(N) symmetry algebra, having a SU(3) subalgebra.

The purpose of this approach is not to revise the Nilsson diagrams, but to
justify the use of SU(3) in phenomenological collective models for the descrip-
tion of heavy deformed nuclei, a question remaining open for many years. The
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present approach implies that several properties of heavy deformed nuclei could
be reliably described within the SU(3) symmetry.

The main open question is if this approximate SU(3) scheme can be of
any practical use, in other words if the approximations made result in a SU(3)
scheme from which reliable conclusions on physical quantities can be drawn.
A first application is given in an accompanying manuscript [41], in which it is
shown that the present scheme can predict the prolate over oblate dominance
in deformed nuclei, as well as the location of the prolate-oblate shape phase
transition in rare earth nuclei without using any free parameters.
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