
NUCLEAR THEORY, Vol. 35 (2016)
eds. M. Gaidarov, N. Minkov, Heron Press, Sofia

Phases and Phase Transitions in the Algebraic
Microscopic Pairing-plus-Quadrupole Model:
Role of the Single-Particle Term in the
Hamiltonian

K.P. Drumev1, A.I. Georgieva2, J. Cseh3

1Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

2Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria

3Institute for Nuclear Research of the Hungarian Academy of Sciences,
P.O. Box 51, H-4001 Debrecen, Hungary

Abstract. The possibility of describing phases and phase transition phenom-
ena in nuclear systems is discussed in the context of a symmetry-adapted shell-
model study. We perform calculations within the Extended Microscopic Al-
gebraic Pairing-plus-Quadrupole Shell Model and present the outcome for two
sd-shell isotopes: 20Ne and 20O. Results for the best-fit description of the ex-
citation spectrum demonstrate the effects on the systems coming from the addi-
tion of the single-particle spin-orbit interaction to the pairing-plus-quadrupole
Hamiltonian.

1 Introduction

Symmetry-adapted shell models are considered as an appropriate tool to study
the quantum phases and the phase transitions in finite quantum systems [1]. Usu-
ally, this kind of models have limiting cases (dynamical symmetries) which give
analytical solution. When one deals with a Hamiltonian which has nonzero con-
tributions from two (or more) interactions of different dynamical symmetries, a
numerical solution is required. The relative weight of the dynamically symmet-
ric interactions serves as a control parameter and it defines the phase diagram of
the system.

The quadrupole-quadrupole interaction has been a standard ingredient in nu-
clear structure models that aim at reproducing rotational spectra and nuclear
deformations. It emerges as a leading contribution in the multipole expan-
sion of any nuclear long-range potential. It is essential for modeling collective
properties of nuclei such as reduced quadrupole transition rates and quadrupole
moments. One model which makes use of the dominance of the quadrupole-
quadrupole interaction in deformed nuclei is the Elliott’s SU(3) shell model [2].
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Similarly, the pairing interaction has long been known to play an important
role in the physics of many-body systems. For its description, the single j-shell
seniority coupling scheme [3] and its multiple j-shell generalization [4] are em-
ployed to obtain an exact solution. In this case, the seniority quantum number
(generalized seniority for the multiple j−shell case) v, which counts the num-
ber of unpaired nucleons, governs the complexity of the problem. Unfortunately,
pair breaking in nuclei, as generated for example by the spin-orbit interaction,
is known to be very important. Since the complexity of the scheme grows com-
binatorially with v, this approach is problematic for all but near closed shell
systems.

Although in some nuclei the pairing and the quadrupole interactions could
reproduce relatively well the observed behavior of the nuclear system, in most
of the cases the study of the relationship between them is of great importance.
This is the main motivation for the development of the Pairing-plus-Quadrupole
Model (PQM) [5] for the description of the nuclear excitation spectra.

Along the last five years, an algebraic approach was developed [6–10] by
considering the basic interactions of the PQM as invariants of the respective
algebras, which reduce the general symmetry of the shell model in a dynam-
ical way. At the same time, the so defined dynamical symmetry chains are
complementary to the Wigner’s spin-isospin SUST (4) [11] symmetry, which
establishes direct connections between the limiting cases These dynamical sym-
metries could be considered as different phases of the nuclear structure. In the
lower shells up to mass numbers A ∼ 100, the two modes – the pairing and the
quadrupole interactions – compete, and in this way different types of collective
spectra, ranging between vibrational and rotational, can be investigated in terms
of phase transitions [12]. In this way, we establish the mixing of the SU(3) basis
states into the pairing bases.

As a symmetry-adapted model, the above approach is a reasonable candidate
for a model, suitable to describe the phases and the phase transition phenomena.
In this particular work, we study and illustrate the role that the introduction of
the one-body spin-orbit term in the Hamiltonian plays in the reproduction of the
spectra in realistic nuclear systems. Spin-orbit correlations were first introduced
independently by Mayer [13] and by Haxel, Jensen, and Suess [14] in order
to explain shell closures and magic numbers. In any given harmonic oscillator
shell, the spin-orbit force mainly affects the largest-j orbital by lowering it en-
ergetically. In heavy nuclei, where the effect is so strong that magic numbers
deviate from the major shell closures of the harmonic oscillator, the pseudo-spin
concept can be applied [15].

We investigate the effect of the l.s coupling on the spectra of two sd-shell
systems – the nuclei 20Ne and 20O. Finally, we translate our results in terms
of appropriately introduced control parameters and try to relate them with the
concept of phases and the description of phase transition phenomena.
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2 The Model

In our earlier works [8–10], the algebraic structure of the shell-model algebra
U(4Ω) is investigated to obtain its reductions through the microscopic pair-
ing algebra SO(Ω) ∼ SO(8), containing all the limits of the SO(8)− pair-
ing model and the Elliott’s SU(3) algebra. The generators of the latter are the
quadrupoleQµ =

∑
l

√
8(2l + 1)(a†l 12 1

2
× ãl 12 1

2
)
(200)

(µ00)
and the angular momen-

tum Lµ =
∑
l

√
4l(2l + 1)(l + 1)/3(a†l 12 1

2
× ãl 12 1

2
)
(100)

(µ00)
operators, expressed

in terms of individual nucleon coordinate and momentum variables. Also, they
are related to the collective models since the β, γ shape parameters can be easily
expressed using the labels λ and µ which describe the SU(3) representations
[16]. Hence, the SU(3) classification of the many-body states has the advantage
of allowing for a geometrical analysis of the eigenstates of a nuclear system. In
U(4Ω), we obtain four reduction schemes, in which as distinct dynamical sym-
metries of the shell model algebra appear the SU(3) algebra [16] and one of
the branches of the SO(8) is locally isomorphic to SO(Ω) pairing algebra [17].
This allows the classification of the basis states of the system along each of
them. A relation between these chains is established on the basis of the com-
plementarity to the Wigner’s spin-isospin UST (4) ⊃ US(2)⊗ UT (2) reduction.
This elucidates the algebraic structure of an extended Pairing-plus-Quadrupole
Model, realized in the framework of the Elliott’s SU(3) scheme [16]. Conse-
quently, all chains determine full-basis sets and could be expressed through each
other [8]. The basis states labeled by the quantum numbers of the representa-
tions of the algebras in the SU(3) chain |ΨR〉 ≡ |{f}α(λ, µ)KL,S; JM〉 are
eigenstates of the rotational limit of the model with quadrupole-quadrupole in-
teraction. Correspondingly, the basis states in which the pairing interaction is
diagonal [17] are labeled as |ΨP 〉 ≡ |{f}v[p1, p2, p3]ξL, S; JM〉. In the above
states, v[p1, p2, p3] are the representations of the SO(8) algebra, α, ξ andK give
the multiplicity labels of the corresponding reductions. Using the expansion of
the pairing states in the SU(3) basis states and the diagonalization procedure for
its matrix in the SU(3) basis, we obtain numerically the probability with which
the states of the SU(3) basis enter into the expansion of the pairing bases.

The specificity of the current approach is to use a Hamiltonian that combines
the quadrupole-quadrupole interaction with both the isoscalar and the isovector
pairing terms, something not done in any previous applications. In an earlier
work [8], the important result that the spatial subalgebraU(Ω) of the shell-model
algebra U(4Ω) contains two distinct dynamical symmetries, defined by the re-
duction chains: a branch through SO(Ω) and another branch through SU(3),
was obtained. Consequently, both chains determine full-basis sets and could be
expressed through each other. Further interactions may be added depending on
the phenomena we need to describe.
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2.1 The Hamiltonian

By comparison with some earlier works [8, 9], here we use a Hamiltonian with
four ingredients of the form

H = G0S
†.S + G1P

†.P− χ

2
Q.Q−C

∑

i

li.si, (1)

where the four parameters χ, G0, G1 and C are the strengths of the quadrupole-
quadrupole, the isoscalar pairing, the isovector pairing and the single-particle
spin-orbit term, respectively. The fourth term is added here and for the first time
we want to explore its role in the overall description of the system. The pair
creation operators that appear in this Hamiltonian are of the form

S†µ =
∑
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2

]010
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l 12

1
2

]001
00µ, (3)

where the phase factors βl = +1 or −1, and the bracket denotes coupling in the
angular momentum, spin and isospin [17].

2.2 The symmetry triangle and the symmetry tetrahedron

The relative weights of the interactions entering the eq. (1) serve as control
parameters and define the phase diagram of the system. In the case, when there
are more than two dynamical symmetries, more than one control parameters
should be introduced.

The quadrupole interaction has SU(3) dynamical symmetry. A simple model
of the isovector and isoscalar pairing can be obtained in anL, S, T scheme which
has SO(8) dynamical symmetry. Next, the pairing-plus-quadrupole interactions
define a submodel with a phase-space of two dimensions (two control parame-
ters), which can be illustrated by a triangle. Each corner corresponds to a dy-
namical symmetry in the L, S, T scheme in the Wigner’s supermultiplets: one
of them is the SU(3), and the others are the isoscalar and the isovector pair-
ing interactions. Hence, analytical solutions are available for the total pairing,
with isoscalar and isovector interactions with equal strenghts, the pure isoscalar
SOS(5) and for the pure isovector SOT (5) interactions [4]. (Note that the
SO(5) algebra is isomorphic with the Sp(4) (compact symplectic) algebra [20],
and SU(4) is isomorphic with SO(6).) A possible convenient choice for the two
control parameters are: x, where the relative strength of the two kinds of pairing
are G0 = xG,G1 = (1 − x)G, 0 ≤ x ≤ 1, and y for the relative weight of the
quadrupole and the pairing strengthG are χ = yχp, G = (1−y)χp, 0 ≤ y ≤ 1),
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Figure 1. The symmetry tetrahedron.
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2.2 The symmetry triangle and the symmetry tetrahedron

The relative weights of the interactions entering the eq. (1) serve as control
parameters and define the phase diagram of the system. In the case, when there
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Figure 1. The symmetry tetrahedron.

where χp = χ+G0 +G1. As a result the phase diagram is a triangle, where the
three limiting cases at its vertices are defined by the conditions: y = 1, x− arbi-
trary for the SU(3) limit, x = 1, y = 0 for the isoscalar case and x = 0, y = 0
for the isovector one. By means of their values we can evaluate the role of each
of the three interactions in the description of the realistic nuclear spectra in each
nucleus.

The increasing strength of the spin-orbit force destroys the L − S coupling
and the system prefers the j−j coupling. This adds a new dimension in the phase
diagram (see Figure 1), which turns to a three-dimensional one, illustrated by a
tetrahedron. The distance from the L − S plain (1 − z) can be chosen as the
third control parameter. For convenience, we measure it from the SU(3) corner,
introducing the following control parameter: C = (1 − z)χmax, χp = zχmax,
where 0 ≤ z ≤ 1). This last parameter χmax = χ + G0 + G1 + C is called
the scale parameter. Obviously, at z = 1 C = 0 and the two-parameter case
(the triangle) is restored. At z = 0, only the l.s term remains and for arbitrary
z, 0 ≤ z ≤ 1), the Hamiltonian (1) can be rewritten as

H = χmax{−yz2 Q.Q+ x(1− y)zS†.S + (1− x)(1− y)zP †.P
−(1− z)∑i li.si)}. (4)

The above phase diagrams allow us to investigate the influence of these residual
(in respect to the nuclear mean field) interactions on the spectra in real nuclear
systems.

3 Results

In this work, we deal with a real test case for the applications of the theory – the
sd-shell, which is the first one, where both deformation and pairing phenomena
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play an important role [21, 22]. Our proof-of-case example presents the simple
but complete system of 4 particles in the sd-shell which allows us to study the
PQM without any truncation of the model space.

The calculations are performed in the SU(3) basis which has the form |ΨR〉 ≡
|{f}α(λ, µ)KL,S; JM〉 where α and K give the multiplicity labels of the cor-
responding reductions. We use techniques for generating the list of the SU(3)
representations [23] and calculating the SU(3) × SU(2) reduced matrix ele-
ments from [24] to evaluate each part of the Hamiltonian in the basis. This is
followed by a numerical diagonalization of the obtained matrix which results in
finding the energy spectrum and the eigenstates of the system.

We can demonstrate the complementarity of the two competing modes (the
pairing and the quadrupole one) by showing the energy spectrum calculated with
the Hamiltonian (1) but this time the results might be affected by the presence
of the single-particle spin-orbit term. A best-fit parameter estimate is done us-
ing the 21 lowest-lying positive-parity states in 20Ne and the 12 lowest-lying
positive-parity states in 20O from the experiment [25]. The quality of the fit has
been estimated using the root mean squared /RMS/ deviation of the model ener-
gies from the experimental ones σ =

√∑
i(E

i
Th − EiExp)2/d (with d = N−p,

where N – number of experimental points, p – number of parameters in the fit).
Below, we perform two types of calculations. For both nuclei, we can do a

three-parameter case, where for the 20Ne nucleus the isoscalar and the isovec-
tor pairing are forced to have equal strengths, while for 20O only the isovector
pairing is present. In the second type of calculation, doable only for the nucleus
20Ne, the pairing strengths are separated and allowed to vary independently with
C appearing as a fourth fitting parameter.

3.1 Results with the spin-orbit interaction added as a third parameter

3.1.1 20Ne results

In this case, the result for the RMS trend is presented in Figure 2. The RMS
minimum of σ = 1.47 MeV is achieved at the following best-fit parameter val-K.P. Drumev, A.I. Georgieva, J. Cseh

Figure 2. Results for the RMS deviation in20Ne with 3 parameters.

but complete system of 4 particles in theds shell which allows us to study the
PQM without any truncation of the model space.

The calculations are performed in theSU(3) basis which has the form|ΨR〉 ≡
|{f}α(λ, µ)KL, S; JM〉 whereα andK give the multiplicity labels of the cor-
responding reductions. We use techniques for generating the list of theSU(3)
representations [23] and calculating theSU(3) × SU(2) reduced matrix ele-
ments from [24] to evaluate each part of the Hamiltonian in the basis. This is
followed by a numerical diagonalization of the obtained matrix which results in
finding the energy spectrum and the eigenstates of the system.

We can demonstrate the complementarity of the two competingmodes (the
pairing and the quadrupole one) by showing the energy spectrum calculated with
the Hamiltonian (1) but this time the results might be affected by the presence
of the single-particle spin-orbit term. A best-fit parameter estimate is done us-
ing the 21 lowest-lying positive-parity states in20Ne and the 12 lowest-lying
positive-parity states in20O from the experiment [25]. The quality of the fit has
been estimated using the root mean squared /RMS/ deviation of the model en-

ergies from the experimental onesσ =
√∑

i(E
i
Th − Ei

Exp)
2/d (per degree of

freedom d).

Below, we perform two types of calculations. For both nuclei, we can do
the case where the isoscalar and the isovector pairing have equal strength, so the
spin-orbit strength comes as a third parameter. In the second type of calculation,
doable only for the nucleus20Ne, the pairing strengths are separated and allowed
to vary independently. In this case, the spin-orbit strength appears as a fourth
fitting parameter.

6

Figure 2. Results for the RMS deviation in 20Ne with 3 parameters.
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ues: G = 0.44 MeV, χ = 0.10 MeV, and C = 3.11 MeV. Compared to the
earlier two-parameter results (G = 0.29 MeV, χ = 0.11 MeV), we have a better
defined minimum, a better description of the spectrum (expressed in terms of
the absolute RMS value). Also, the valley of the minima is still preserved in the
presence of the spin-orbit term in the interaction Hamiltonian.

3.1.2 20O results

For this isotope, the result for the RMS trend is presented in Figure 3. The
RMS minimum of σ = 0.85 MeV is achieved at the following parameter values:
G1 = 0.20 MeV, χ = 0.12 MeV, and C = 1.53 MeV. Compared with the
result obtained without the use of the spin-orbit interaction (G1 = 0.31 MeV,
χ = 0.15 MeV), one again sees that the major effect is again the fact that the
minimum is more clearly defined. Unlike the 20Ne result above, here with the
rise of C the valley of the minima moves down towards smaller values of the
isovector pairing strengthG1 and the quadrupole strength χ. Also, for the points
below this valley, the RMS values rarely go above 5 MeV as this happens only
for very negligible values of the parameter C.

Phases and Phase Transitions in PQM

Figure 3. Results for the RMS deviation in20O with 3 parameters.

3.1 Results with the spin-orbit interaction added as a third parameter

3.1.1 20Ne results

In this case, the result for the RMS trend is presented in Fig.2. The RMS min-
imum of σ = 1.47 MeV is achieved at the following best-fit parameter values:
G = 0.44 MeV, χ = 0.02 MeV, andC = 3.11 MeV. Compared to the earlier
two-parameter results (G = 0.29 MeV, χ = 0.11 MeV), we have a better de-
fined minimum, a better description of the spectrum (expressed in terms of the
absolute RMS value). Also, the valley of the minima is still preserved in the
presence of the spin-orbit term in the interaction Hamiltonian.

3.1.2 20O results

For this isotope, the result for the RMS trend is presented inFig. 3. The RMS
minimum of σ = 1.23 MeV is achieved at the following parameter values:
G1 = 0.32 MeV, χ = 0.12 MeV, andC = 1.53 MeV. Compared with the
result obtained without the use of the spin-orbit interaction (G1 = 0.31 MeV,
χ = 0.150 MeV), one again sees that the major effect is again the fact that the
minimum is more clearly defined. Unlike the20Ne result above, here with the
rise of C the valley of the minima moves down towards smaller values ofthe
pairing strengthsG0 andG1. Also, for the points below this valley, the RMS
values rarely go above 5 MeV as this happens only for very negligible values of
the parameterC.

3.2 20Ne results with the spin-orbit interaction added as a fourth param-
eter

At last, we present the result for the20Ne isotope in the four-parameter case
when the two pairing modes are allowed to participate with different strengths
in the Hamiltonain. The results are presented In Fig.4, where we illustrate the
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Figure 3. Results for the RMS deviation in 20O with 3 parameters.

3.2 20Ne results with the spin-orbit interaction added as a fourth param-
eter

At last, we present the result for the 20Ne isotope in the four-parameter case
when the two pairing modes are allowed to participate with different strengths
in the Hamiltonain. The results are presented In Figure 4, where we illustrate
the trends in the description depending on the quadrupole strength χ (in up-down
direction) and on the spin-orbit strength C (going left-right).

The best result is achieved at G0 = 0.00 MeV, G1 = 0.48 MeV, χ =
0.12 MeV, and C = 3.26 MeV with an RMS best value of σ = 1.71 MeV (the
three-parameter outcome is G0 = 0.29 MeV, G1 = 0.29 MeV, χ = 0.11 MeV).
We see that this point moves from the situation where the two pairing modes
are equally present to a result where the isovector pairing should dominate in
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Figure 4. Results for the RMS deviation in20Ne with 4 parameters.

trends in the description depending on the quadrupole strength χ (in up-down
direction) and on the spin-orbit strengthC (going left-right).

The best result is achieved atG0 = 0.00 MeV, G1 = 0.48 MeV, χ = 0.12
MeV, andC = 3.26 MeV with an RMS best value ofσ = 1.71 MeV (the
three-parameter outcome isG0 = 0.29 MeV, G1 = 0.29 MeV, χ = 0.11 MeV).
We see that this point moves from the situation where the two pairing modes
are equally present to a result where the isovector pairing should dominate in
the four-parameter estimate. This happens at very low values of the spin-orbit
strength, followed by deepening the minimum at higherC values.

The outcome we obtain is probably due to the fact we work in theds shell
and theSO(Ω) where the spatial degeneracy isΩ = 6. So, the presence of
both the isovector and the isoscalar mode appears to naturally be suppressed.
In contrast, for the case for thefp shell, for example, we have dimension of
Ω = 10. There we expect that both pairing modes may be equally present, so
it is reasonable to expect that both modes can again be allowed to be present at
some comparable extent.

In Figure 5, one can compare the results for the excitation spectrum obtained
using only three fitting parameters (withoutC) and the four-parameter result
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Figure 5. 20Ne spectrum - the left column represents the experiment [25], followed by
the 3-parameter-fit result and the one using all 4 parameters.

from this work. For some of the states in the spectrum, there is some clear
improvement in the position of the theoretically obtained energies.

And finally, in terms of the three control parametersx, y andz, the three-
and the four-parameter results are the following:x = 0.00, y = 0.20, andz =
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Figure 5. 20Ne spectrum – the left column represents the experiment [25], followed by
the 3-parameter-fit result and the one using all 4 parameters.
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the four-parameter estimate. This happens at very low values of the spin-orbit
strength, followed by deepening the minimum at higher C values.

The outcome we obtain is probably due to the fact that we work in the sd-
shell and the SO(Ω) where the spatial degeneracy is Ω = 6. So, the presence
of both the isovector and the isoscalar mode appears to naturally be suppressed.
In contrast, for the case for the fp shell, for example, we have dimension of
Ω = 10. There we expect that both pairing modes may be equally present, so
it is reasonable to expect that both modes can again be allowed to be present at
some comparable extent.

In Figure 5, one can compare the results for the excitation spectrum obtained
using only three fitting parameters (without C) and the four-parameter result
from this work. For some of the states in the spectrum, there is some clear
improvement in the position of the theoretically obtained energies.

And finally, in terms of the three control parameters x, y and z, the three-
and the four-parameter results are the following: x = 0.00, y = 0.20, and z =
0.16 versus the previous three-parameter-fit result of x = 0.50 and y = 0.16,
respectively. The result is considerably different from the one obtained without
the use of the spin-orbit term mainly due to the suppresion of the isoscalar phase.

4 Summary

In this work, we illustrated how the introduction of the single-particle terms in
the Hamiltonian of the system affects the results obtained for the energy spectra
of two sd-shell nuclei. Some of the previously observed features are preserved,
others are not. The minima of the RMS deviation from the experiment with the
extended Hamiltonian are better defined while the valleys of minima are reason-
ably well preserved in shape although they may change their position. In the
four-parameter case of 20Ne we show in details how the minimum drastically
changes its position and express the outcome in terms of the control parameters
which define the dominating symmetry(phase) of the system. Further develop-
ments of similar description of phases and transition phenomena will shortly be
underway.
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