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Abstract. Models of dark particles interaction with massive gravitational bod-
ies are proposed and investigated. The models describe the resonant amplifica-
tion of effective interaction between massive bodies at large distances between
them. The phenomenon is explained by the catalytic action of dark particles
in the system consisted of two and more heavy bodies (galaxies). Resonant
amplification of the effective interaction between these heavy bodies imitates
the increase of mass of the bodies, while their true gravitational mass remains
unchanged. Such increasing of interactions leads besides to the gravitational
lensing of passing light.

The interaction between a dark particle and a heavy body was taken in the sep-
arable form. Such separable form allows us getting the analytical solutions and
simple analysis of the three-body solutions. The gravitational interaction be-
tween two heavy bodies was taken in the ordinary form.

1 Introduction

The dark matter problem emerged from the analysis of astronomical data, which
showed abnormal high orbital velocities of galaxies at periphery of galactic clus-
ters. It seems that the periphery galaxies gained additional invisible mass named
as dark matter or dark particles. Discovered effect of gravitational lensing sup-
ported such assumption. This problem is still not solved and remains intensively
studied [1–3].

In this paper we do not consider the nature of dark matter or dark particles
(for that see, for instance, [3–7]). May be the dark particles exist in form of
stretch-out strings with special properties, which can be described in the frame
of SUSY. There are a lot of ideas on the nature of the dark matter [8, 9].

Below we consider the following questions: Why the dark particles interact
more intensively with massive bodies at large distances, but demonstrate the in-
significant impact on massive bodies at relatively small astronomical distances?
Why within the solar system the observed action of dark particles is vanishing?

In this problem we can see the analogy with the catalytic action of an addi-
tional third particle which intensify the interaction in the system of two initial
particles.

In comparison with a system of interacting two particles, the systems of
three particles have some exceptional phenomena. Thomas’ effect describes the
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collapse in the system of three identical particles, when the interaction in the
every pair of the particles has zero range (point-like interactions) [10]. Then, V.
Efimov predicted the effects of the condensation of levels in the three-particle
spectrum and the logarithmic growth of their number when the ratio of the pair
scattering length to the radius of pair forces is increasing [11].

The Efimov effect was confirmed in the some independent experiments [12,
13]. The opposite movements of ordinary bound states and the Efimov levels in
the energy plane that happened at changing of the coupling constant of two-body
interactions have been described in [14]. The effects demonstrate the different
nature of these sort of levels. The phenomena take place in four body and more
complicated few-body systems [12, 13]. So, three-body (and few-body also)
systems demonstrate the more rich phenomena than simple two-body systems
[15, 16]. For example, three-body resonance peaks depend on the distance be-
tween the heavy bodies [17, 18].

It is remarkable that the impulse of a light particle and the distance between
heavy bodies do not submit to the uncertainty relation, because these main vari-
ables are correspond to different objects. Therefore, we can determine the reso-
nant energies and the resonant distances with enough accuracy.

So then, we try to use specific properties of the three-body physics in order to
create a model of dark matter action. We consider that dark particles exist and we
suppose they do not interact with each other. However, the dark particles interact
with heavy bodies. This interaction is to be very small at low energies and
becomes a little more intense, then decreases again with increasing of energy. In
this model the heavy bodies represent itself the galaxy in the galaxy clusters.

The three-body model gives the resonance amplification of interaction be-
tween the two heavy bodies (galaxies) situated on relative huge distances be-
tween them. The exact solutions may be interesting for a number of real prob-
lems in modern astrophysics.

2 Effective Interactions Between Heavy Bodies in Presence of Dark
Particles

We consider the problem in the frame of quantum scattering theory of three-
body and four-body systems. For simplicity, let us assume that the interaction
between a dark particle and a heavy body has the separable form: VDH = |ν >
λDH < ν|, where VDH is the potential of interaction between a dark particle and
a heavy body, denoted with DH , λDH is the corresponding coupling constant.
The form-factor of the potential in the impulse representation is< ν|~p >= ν(~p),
m = M1 is the mass of the dark particle, but Mi are the heavy body masses,
where i = 2, 3 and Mi >> m. For simplicity, we guess ~ = c = 1. The
two-body T-matrix has the separable form TDH = |ν > ηDH < ν|, where

η−1
DH = λ−1

DH + I(E) , I(E) = −
∫
d~p

ν2(~p)

E − Ep + iγ
. (1)
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For simplicity we consider the S-wave and the potential form-factor in the
form: ν(p) = Nt/(1 + t2), where t = p/β, N2 = 4π/mβ, t0 = p0/β.
Then I(E) = I(t0) = (1 − 2it0)/(1 − it0)2, M = Mi >> m. We take
−1 < λDH < 0, it means that the two-body system has a virtual state only. In
common case, we can take into account more complicated interactions.

2.1 Interactions Between Two Heavy Bodies Created by Dark Particles

The problem of dark particle interaction with two heavy bodies can be solved in
the frame of Faddeev’s quantum mechanical equations:

Tij(E) = TDH,iδij + TDH,i
∑

l

δilG0(E)Tlj(E) , i, j = 1, 2, 3 , (2)

where δil = I − δil and i, j, l - the numbers of interaction pares. For example,
i = 1 marks the interaction between two heavy bodies with numbers 2 and 3,
i = 2 means the interactions between the dark particle with heavy body 3, and
i = 3 means the interactions between the dark particle with heavy body 2. Total
T -matrix is T =

∑
i,j Ti,j .

At first, we determine the solutions without gravity forces. Then the solution
for T -matrix takes the form:

Tij(E) = TDH,iδij + |νi > ηiMijηj < νj | , i, j = 2, 3 , (3)

where

Mij(~r, ~r
′) = Jij(~r; p0)δ(~r + ~r ′) +

∑

k

Jik(~r; p0)ηk(p0)Mk,j(−~r, ~r ′) , (4)

Jik(~r; p0) = 2m

∫
d~p exp(i~r~p)

νi(p)δikνk(p)

p2
0 − p2 + i0

, k = 2, 3 . (5)

The expressions Mij(~r, ~r
′) = M+

ij (~r) · δ(~r+~r ′), if j 6= i and Mii(~r, ~r
′) =

M−ii (~r) · δ(~r − ~r ′) in the case j = i, then

M+
ij (~r) = [I −K(~r)]−1

ii Jij(~r; p0) j 6= i , (6)

M−ii (~r) = [I −K(~r)]−1
ii Kii(~r; p0) · η−1

i (p0) . (7)

Here,Kii(~r, p0) = Jij(~r; p0)ηj(p0)Jji(~r; p0)ηi(p0), p0 is the initial momentum
of the dark particle, d = 2r is the distance between two heavy bodies. Note that
D = det[I −K(~r, p0)] = 0 corresponds to the pole in the amplitudes M+

ij (~r)

and M−ii (~r) (see Figure 1).
We take into account the two important values as given: p0 is the impulse

of an incident dark particle and d = 2r is the distance between the two heavy
bodies.

282



Few-Body Models in the Dark Matter Problem

Figure 1. Real and imaginary parts of the amplitude A(t0;x) = M+ + M−;
t0 = p0/β; x = rβ.

2.2 Interactions of Dark Particles with Three Heavy Bodies

It is very important to take into account the solutions of more complex objects,
particularly the four-body systems which consist of three heavy bodies and one
light dark particle. As in the previous simple case, the problem of a dark particle
scattering on three body subsystem can be solved in an analytical form.

Omitting reduction procedure of Yakubovsky-Faddeev [20–22], we can write
an expression for the connected part T c of the total four-body T -matrix as

T ci,j;n,n = |νi > ηiR
l
ijηj < νj | , (8)

and write down the equation:

Rlij = Qjil · ηl ·
{
Plj +Rilj

}
, (9)

where
Qjil =

{
Λil + P jiiηjΛil + PijηjΛjl

}
δ̄liδ̄lj . (10)

We keep the previous notations, and mark by i, j, l = 2, 3, 4 at P jii, Q
j
il and Rilj

the number of scattering centers (the number of heavy bodies).
To simplify this, we can consider that all three heavy bodies are identical.

Then, for diagonal amplitudes:

T ci,i;n,n = |νi > ηiR
l
iiηi < νi| , (11)

we can get
Rlii = P liiδ̄lj + Λilδ̄liδ̄ljηlR

j
li . (12)

Transform the equations to the coordinate space:

Rlij(~rl, ~rj ;~r
′
l, ~r
′
i, ) =

∫
· · ·
∫
d~pl~pj~p

′
l~p
′
i exp {−i~pl~rl − i~pj~rj} · (13)

· exp {i~p′l~r′l + i~p′i~r
′
i}Rlij(~pl~pj ; ~p′l~p′i) ,
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then, we have:

Qjil(~rj , ~rl;~r
′
i, ~r
′
j) =

1

I −Bjii
[Jil(~rl) · δ(~rl + ~r′l) · δ(~rj − ~r′j) + (14)

+Jij(~rj)ηjJjl(~rl) · δ(~rl + ~r′j) · δ(~rl + ~r′i)] · δ̄lj δ̄li ,

where
Bjii(~r) = Jij(~r)ηj(p0)Jji(−~r)ηi(p0) . (15)

Here, p0 is the initial impulse of the dark particle.

Rlij(~rj , ~rl) = Qlij(~rj , ~rl) + Υ1 ·Rlij(~rj , ~rl) + (16)

Υ2 ·Rlij(−~rj , ~rl) + Υ3 ·Rlij(~rj ,−~rl) ,

where
Υk =

1

I −Bjii(~rj)
· Ωk · ηi , (17)

and

Ω1 = Jil(~rl) · ηl ·
1

I −Bjll(~rj)
· Jli(−~rl) + (18)

Jij(~rj) · ηj · Jjl(~rl) · ηl ·
1

I −Bjll(−~rl)
· Jlj(−~rl) · ηj · Jli(−~rj) ,

Ω2 = Jil(~rl) · ηl ·
1

I −Bjll(~rj)
· Jlj(~rj) · ηj · Jji(−~rl) , (19)

Ω3 = Jij(~rj) · ηj · Jjl(~rl) · ηl ·
1

I −Bjll(−~rl)
· Jli(−~rj) . (20)

It is important, that

Rlij(~rj , ~rl)→ Rlij(~rj ,−~rl) , if ~rl → ~rj , ~rj → ~rl , (21)

Rlij(~rj , ~rl)→ Rlij(−~rj , ~rl) , if ~rl → −~rj , ~rj → ~rl , etc. (22)

As an example, we consider the simple case when distances between three
heavy bodies are the same ~r = ~ri = ~rj = ~rl. Then the amplitude R = Rlij in
S-wave can be written in the form:

R = R(p0, r) =
J(1− J · η)

1− 2J · η , (23)

where
J = Jij(p0, |~rj |) , i 6= j . (24)

Following the equation (23), we can see that the resonances appear at other
values of distances between the heavy bodies and the dark particles impulses
than in the case of the three-body system. But these quantities must be close to
each other on the order of magnitude.
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Figure 2. Real and imaginary parts of the amplitude R = R(t0; ρ); t0 = p0/β; ρ = rβ.

3 Gravity Interactions on Background of Dark Matter

We mark as V1 the gravity interaction between two heavy bodies; and we denote
with index DH the interactions and solutions where the dark matter particles
take part. In non-relativistic quantum mechanics the Hamiltonian of two heavy
bodies can be written in the form :

Ĥ = − 1

2M
∇2 + V1(r) , (25)

where V1 is the Newtonian gravitational potential [1,2]. Then, including this
potential in the Lippmann-Schwinger equation we can write

|Ψ >= |Φ > +GΦV1|Ψ >= |Φ > +G0Vef |Ψ > , (26)

where Ψ(r) is the total wave function for the three-body system, Φ and TΦ are
the solutions without gravity forces. The indices i, j are omitted for simplicity.

The effective potential equals Vef = [I + TΦG0]V1 and can be written as

Vef = V1 + |νDH > ηDH [I + (M+
DH +M−DH)ηDH ] < νDH |G0|V1 . (27)

We determine the enhancement factor for the gravity force as

Ξ =
< νDH |Vef |νDH >

< νDH |V1|νDH >
≈ (M+

DH +M−DH) . (28)

Note that the second addendum of Vef in (28) depends on r = d/2, where d is
the distance between two heavy bodies. Let us then estimate the characteristic
distances. If the resonance takes place at following parameters: λDH = −0.99;
ρ = r·β = 3.4, then, assuming that r = 3.4·1022m, one can get β ≈ 10−22m−1

and p0 ≥ 10−23m−1, and a real part of the enhancement factor can achieve
Ξ(r) = 100.

The orbital velocity of the peripheral body becomes higher than that at nor-
mal gravity owing to the enhancement factor. Moreover, the flux of dark matter
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Figure 3. Real part (left) and imaginary part (right) of the enhancement factor Ξ at
λDH = −0.99.

particles would attract these two heavy bodies and, with respect to other particles
and fields (gamma quanta, for instance). The system would have the effective
mass much higher than its own gravitational mass. Such mechanism can con-
tribute to the gravitational lensing of electromagnetic radiation.

Noticeably, one can include in equations (8) – (10), (25) – (27) the additional
interactions with gammas and obtain the enhancement factor for these interac-
tions.

4 Conclusion

The obtained above solutions demonstrate that the effective interaction between
two gravitational objects can behave resonantly at the huge distances between
them. This resonant amplication is stimulated by additional interactions of mas-
sive bodies via dark matter particles. At small distances the amplication is neg-
ligibly small and the effective interaction coincides in this case with the direct
interaction between the heavy bodies.

It is remarkable that the enhancement factor in this model acts only between
two heavy bodies at large distances but is not so effective in the case of interac-
tions between a dark matter particle and three or more heavy bodies simultane-
ously.

In reality, the interactions between dark matter particles and heavy bodies
may be more complex.
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