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Abstract. In this paper is presented the explicit improved numerical gener-
alization of Bethe-Weizsacker mass formulae which describes the values of all
2654 measured nuclei masses in AME2012 nuclear database with accuracy less
than 2.2 MeV, starting from the number of protons Z = 1 and the number of
neutrons N = 1. In the obtained generazation of the Bethe-Weizsacker formula
the influence of magic numbers and boundaries of their influence between them
is defined for nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2,
8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers.

1 Introduction

The history and development of Bethe-Weizsacker (BW) mass formulae was
presented in details in paper [1] - accuracy for nuclei masess bether or equale to
2.6 MeV. The purpose of the present work is to obtain the improved, compared
with [1], explicit form of BW formulae as function of Z and N , which describes
the values of nuclei masses from most recent evaluation database AME2012
(December 2012 – [2,3]. The masses extrapolated from systematics and marked
with the symbol in the error column [4] are not taken into account here. These
aim have been reached using Alexandrov dynamic autoregularization method
(FORTRAN code REGN-Dubna [5–17]) for solving the overdetermined alge-
braic systems of equations, which is constructive development of Tikhonov reg-
ularization method [18–20]. One have to note that the use of procedure LCH
(developed by Alexandrov and Mavrodiev) permits to dicover the explicit form
of unknown function [21–26]. The basis for the classic BW mass formula is
sketched in Sec.1 of this paper. The explicit form of numerical generalization
of BW mass formula is described in Section 2. The results and graphical pre-
sentation of residuals Res = Expt − Th like functions of variables A, Z and
N is presented in Section 3. The Fortran source code of the generalized BW
mass formula and the description of the experimental nuclear mass values from
AME2012 database are presented in paper [38]. The predicted values of the
binding energy, nuclear mass, atomic mass and mass excess for supper-havy
nuclei analyzed in paper [37] are presented in Table 2 of Appendix.
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2 The Bethe–Weizsacker Mass Formula and Binding Energy of the
Nucleus

The nuclear masses can be calculated from the formula:

MNucl(A,Z) = Zmp +Nmn −AEB(A,Z) , (1)

where Z and N are the numbers of protons and neutrons, mp and mn are their
masses correspondingly, A = Z + N and EB(A,Z) is the binding energy per
nuclei.

In the theory of the liquid drop model, proposed by George Gamov [27], the
BW formulae for binding energy per nucleonis given by

EB(A,Z) = V olume− Surface 1

A(1/3)
− ChargeZ(Z − 1)

A(4/3)

− Symmetry
(N − Z)2

A2
+ Pairing

δ(A,Z)

A(3/2)
, (2)

where δ(A,Z) = +1 for evenN ,Z, δ(A,Z) = −1 for oddN , Z and δ(A,Z) =
0 for odd A = Z + N . The improving of Eq. (1) had been proposed in many
papers: [20–28]. For performing the digital generalization of BW mass for-
mula we accept that the Volume, Surface, Charge, Symmetry, Pairing and pow-
ers of A : 1/3, 4/3, 2, 3/2 from formula (2) are s unknown functions of A,
Z and unknown parameters a = (ai, i = 1, N). If we accept the notation
V ol = V olume, Cha = Charge, Sym = Symmetry, Wig = Pairing,
magic numbers correction function KMN (A,Z, a) and for powers P1(A,Z, a),
P2(A,Z, a), P3(A,Z, a), P4(A,Z, a) the formula of the binding energy will has
a form

EB(A,Z, a) = V ol(A,Z, a)− Sur(A,Z, a)
1

AP1(A,Z,a)

− Cha(A,Z, a)
Z(Z − 1)

AP2(A,Z,a)
− Sym(A,Z, a)

(N − Z)2

AP3(A,Z,a)

+ Wig(A,Z, a)
δ(A,Z)

AP4(A,Z,a)
+KMN (A,Z, a). (3)

For more convenient start of iteration procedure the inicial values of new un-
known functions are choosen near to the values of constants from papers [4],
[27–37] as well as the values of powers in fomula (2). The explicit form of this
ten unknown functions will be discovered by the solution of inverse problems,
defined from overdetermined systems of nonlinear equations for binding energy,

E
Expt(Aj ,Zj)
B = E

Th(Aj ,Zj ,a)
B (4)

nuclear mass

M
Expt(Aj ,Zj)
Nucl = M

Th(Aj ,Zj ,a)
Nucl (5)
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atomic masses

M
Expt(Aj ,Zj)
At = M

Th(Aj ,Zj ,a)
At (6)

and mass exccess

M
Expt(Aj ,Zj)
Exc = M

Th(Aj ,Zj ,a)
Exc (7)

where j = 1, . . . , 2564 and a is a set unknown digital parameters. The relations
between the values of nuclei massMNucl(A,Z), atomic massMAt(A,Z), mass
excessMExc(A,Z), hydrogen atom massmH , proton massmP and the neutron
mass mN [2]- [4] are:

MAt(A,Z) = ZmH +NmN +AEB(A,Z), (8)

MNucl(A,Z) = MAt(A,Z)(Zme +AelZ
2.39 +BelZ

5.35) (9)

and
MExc(A,Z) = MAt(A,Z)−Au (10)

whereAel = 1.4438110−5 MeV, andBel = 1.5546810−12 MeV, aN−1 = 2.39,
aN = 5.35 [19, 30], the mass of the Hydrogen atom mH = 938.782303(0.084)
MeV, mn = 939.56538(4.56) MeV, mp = 938.272046(21) MeV, mel =
0.510998928(11) MeV, and u = 931.494061(21) MeV.

The 1 − σ uncertainties in the last digits of the above values are given in
parentheses after the values.

The error analysis of the digital parameters ai need more power computer
facilities and work time. So, the correlations between parameters and their ex-
clusion from unknown function will be done in the next research.

The using the LCH procedure, realized in the REGN program, permits us to
choose the “better” function out of two functions with the same χ2.

3 The Explicit Form of the Numerical Generalization of BW Mass
Formula

The linearly independent arguments of numerical generalization v = vi, i =
1, . . . , 9 can be choosen as follow:

v1 =
Z

A
, v2 =

N

A
, v3 =

N − Z
A

,

v4 =
Z

N + 1
, v5 = ln (A+ 1), v6 = 1/v5

where Z and N are the numbers of protons and neutrons in nuclei, A = Z +N
and v7 = 0, for odd A v7 = 1, for even A, v8 = 0, for odd Z and v8 = 1, for
even Z, v9 = 0, for odd N , v9 = 1, for even N .
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Solving the overdetemined nonlinear algebraic systems (3 and 23) with con-
dition Expt = Theory for binding energy, nuclear mass, atomic mass and mass
excess, using step by step different models for unknown functions

V ol(A,Z, a), Sur(A,Z, a), Cha(A,Z, a), Sym(A,Z, a), Wig(A,Z, a),
P1(A,Z, a), P2(A,Z, a), P3(A,Z, a), P4(A,Z, a), and KMN (A,Z, a),

using the possibilities of FORTRAN code REGN [5–17] for to choose the “bet-
ter” function (LCH procedure [21–26]), we receive their explicit forms as fol-
low:

V ol(A,Z, a) = exp (a1) + P (v, a, Is)) + C(v, a,N0) , (11)
Sur(A,Z, a) = exp (a2) + P (v, a, Is +Np) + C(v, a,N0 +Ni) , (12)
Cha(A,Z, a) = exp (a3) + P (v, a, Is + 2Np) + C(v, a,N0 + 2Ni) , (13)
Sym(A,Z, a) = exp (a4) + P (v, a, Is + 3Np) + C(v, a,N0 + 3Ni) , (14)
Wig(A,Z, a) = exp (a5) + P (v, a, Is + 4Np) + C(v, a,N0 + 4Ni) . (15)

The parametrized powers that were implemented in Eqs. (6) have been obtained
using the same LHC procedure and defined as

P1(A,Z, a) = exp (a6) + P (v, a, Is + 5Np) + C(v, a,N0 + 5Ni) , (16)
P2(A,Z, a) = exp (a7) + P (v, a, Is + 6Np) + C(v, a,N0 + 6Ni) , (17)
P3(A,Z, a) = exp (a8) + P (v, a, Is + 7Np) + C(v, a,N0 + 7Ni) , (18)
P4(A,Z, a) = exp (a9) + P (v, a, Is + 8Np) + C(v, a,N0 + 8Ni) , (19)

where

P (v, a, i) = exp
[
−
( 3∑

j=1

4∑

j=1

ai+l+4(j−1)v
j
l + ai+13v6 + ai+14v5

)2]
(20)

and

C(v, a, i) = exp
[
(−
(
ai+1

v7

A
+ ai+2

v8

Z
+ ai+3

v9

N + 1
+ ai+4

)2]
. (21)

The different values of the proton and neutron magic numbers were considered
in different inverce problems and the dependence on the magic numbers and the
bounaries between them were determined.

For obtaining the dependencies from magic numbers and boundaries be-
tween them, which define their influence, there was formulated different inverse
problems with different values of proton and neutron magic numbers.

The LCH analysis of solutions of different inverse problems gives the ex-
plicit form of function KMN (A,Z, a, i) for nine proton and ten neutron magic
numbers (see Appendix) as follow:
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KMn(A,Z, a) =
1

AN
[wZ(1 + C(v, a,N0 + 9Ni)) +G(v, a,N1)]

×
exp

−(Z − ZMN )2

2G(v, a,N1 + 2Nw)

(Z − ZMN)2 +G(v, a,N1 + 2Nw)

+
1

AN
[wN (1 + C(v, a,N0 + 10Ni)) +G(v, a,N1 +Nw)]

×
exp

−(N −NMN )2

2G(v, a,N1 + 3Nw)

(N −NMN )2 +G(v, a,N1 + 3Nw)
, (22)

where ZMN and NMN are the narst to Z and N = A − Z magic numbers,
correspondingly, wZ and wN are the half sum of corresponding magic num-
bersbetween which are Z and N . The explicit form of the function G(v, a, i)
is

G(v, a, i)=exp
(
ai+15 −

( 3∑

j=1

4∑

l=1

ai+l+4(j−1)v
j
l +ai+13v6+ai+14v5

)2)
. (23)

The integer numbers in formulaes (12–23) have the values as follow:

Is = 9, Np = 15 = Nw, Ni = 4, N0 = Is(1 +Np),

N1 = N0 +Nd, Nd = 44, N = N0 +Nd + 4Nw + 1 = 249.

The investigation of parameter’s errors and correlations between them will be
presented in next work. Our estimation is that after using LCH procedure the
number of parameters will be less in times with the same χ2.

4 The Behavior of the Different Part of Generalized BW Mass
Formulae like Functions of Variables A, Z and N

In paper [38] the interesting reader can see the behavior of the structures V ol(A,Z, a),
Sur(A,Z, a), Cha(A,Z, a), Sym(A,Z, a) and Wig(A,Z, a), see Eqs. (11–
15), as functions of A, Z and N , the behavior of power factors P1(A,Z, a),
P2(A,Z, a), P3(A,Z, a), P4(A,Z, a), see Eqs. (16–19), as functions of A, Z
and N , see Eqs. (14) and Figure 1, the magic numbers correction energy func-
tion KMN (A,Z, a, i) of the magic numbers, see (14), as function of the proton
Z, neutronN and atomic mass numberA respectively, the behavior of structures

V ol(A,Z, a), Sur(A,Z, a)
1

A(P1(A,Z, a))
,

Cha(A,Z, a)
Z(Z − 1)

A(P2(A,Z, a))
, Sym(A,Z, a)

(N − Z)2

A(P3(A,Z, a))

as functions of A, Z and N , see Eqs. (3) and (22) and Figure 3.
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5 Results

The challenge of low energy nuclear physics to describe the dependence of the
binding energy, nuclear, atomic mass and mass excess as functions of the num-
ber of protons and neutrons is presented. This result was established by using the
experimental data from AME2012 [2, 3] database, the inverse problem method
for discovering the explicit form of unknown theoretical function (model) and
the values, based on the REGN (L. Alekasandrov-Regularized Gauss-Newton
iteration method) [5–17] for solving the over-determined non linear system of
equations. One has to note that the LCH-weighting procedure [2, 21, 23–26] of
the REGN program permits to choose the better function out of two functions
with the same χ2. The essential advantage of the Alexandrov method [5–17]
from other similar methods is extremely eective ideology regularization of in-
verse problem solution, which on each iteration step controls not only the ac-
tual decision, but, very importantly, uncertainty of the solution. At the same
time, the transition from the mathematical theory of the autoregularizated it-
erative processes, which is based on meaningful theorems of convergence L.
Aleksandrov [6] to Fortran codes (REGN-Dubna [8], FXY-Sofia-Dubna [17] is
very complicated, but technically clear work.

The explicit form for functionsEThB (A,Z, a),MTh
Nucl(A,Z, a),MTh

At (A,Z, a),
MTh
Exc(A,Z, a) and the solution for the values of digital parameters a describe

2564 nuclei, atomic masses, mass excess and binding energies starting from
A = 2 (Z = 1, N = 1) with relative error εr

εr =
1

N

N∑

i=1

Expt(Ai, Zi)− Th(Ai, Zi, a)

Expt(Ai, Zi)
. (24)

The resuduals, which are the difference between experiment and model values

Residual = Expt− Th (25)

belongs to the interval (−2.0, 2.20) Mev for nuclear, atomic mass and mass
excess and to (−0.17, 0.15) for binding energy. Its distributions and Gauss fits
are presented in the next two figures.

The χ2 test (estimation of describing accuracy) has been done to determine
what signicance there is with this value of χ2 using the formula (see Eq. (6)
in [28]):

χ2 =

M∑

k=1

(
Expt(Ak, Zk)− Th(Ak, Zk, a)

(Ak, Zk)

)2

(26)

where

σ(Ak, Zk) = CσStat(Ak, Zk) + PercentExpt(Ak, Zk). (27)

Here σStat(Ak, Zk) is the uncertainty of a nuclei as it has been reported in
AME2012, C and Percent are the nuisance parameters, where C = 1 and
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Figure 1. The distribution of nuclear mass residuals and its Gauss fit.

Figure 2. The distribution of Binding energy residuals and its Gauss fit.

Percent is percentage of the given experimental value. Table 1 illustrates the
quality of descriptions of the binding energy, the nuclear, atomic masses and the
mass excess assuming different hypothesis for the Percent, εr, χ2 and χn,

χn =

√
χ2

M −N (28)
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where M − N is the number of degrees of freedom. Note, that some masses
of nuclei are measured with very high precision, which can noticed from mass

Table 1.

Percent εr χ2 χn
Be 0.290E-02 0.417E+00 2564. 1.052

MNucl 0.118E-04 -0.672E-03 2468. 1.033
MAt 0.118E-04 -0.672E-03 2467. 1.032
MExc 0.217E+00 0.241E+02 2464. 1.03

excess column in AME2012, but due to artificial cut-off of the significant digits
the uncertainties for these nuclei are given as zero uncertainty. Since we do not
know the exact numbers we treat uncertainties for these nuclei as 1 percent of
the given experimental value. The nuclear drip lines are the boundary delimiting
the zone of Z, N in which atomic nuclei lose stability due to the transmutation
of neutrons (down one) as well as because of Coulomb repulsion of protons
(up). To nd where these drip lines are on the nuclear landscape we need to
know the values of Z and N , where the separation energy is changed its sign.
The coordinates, where separation energies change the sign can be calculated by
using the explicit form for binding energy EB(A,Z, a) see (Eq. 3).

The formulae for two neutrons and two proton separation energies are

S2p(Z,N, a) = (Z+N)EThB (Z,N, a)− (Z− 2 +N)EThB (Z− 2, N, a) (29)

and

S2n(Z,N, a) = (Z+N)EThB (Z,N, a)− (Z+N −2)EThB (Z,N −2, a) (30)

Figure 3. The asymptotoc behavior of calculated proton and neutron S2n drip-lines.

295



S.Cht. Mavrodiev

as well as simple algorithm for calculation of coordinates Z, N .
The next figure illustrates the behavior of calculated two proton and neutron

drip-lines and their asymptotic.
In Table 2 the predictions for the values of binding energy, nuclear mass,

atomic mass and mass excess for some heavy nuclei (paper [37]) are presented.

Table 2. The predictions of binding energy, nuclear mass, atomic mass and mass excess
in MeV (paper [37])
NO ELEMENT A Z N N − Z BINDING ENERGY NUCLMASS ATOMICMASS MASSEXCESS
1 104266 266 104 162 58 0.7346076E+01 0.2478347E+06 0.2478889E+06 0.1114747E+03
2 104267 267 104 163 59 0.7336931E+01 0.2487694E+06 0.2488236E+06 0.1146416E+03
3 104265 266 105 161 57 0.7335649E+01 0.2478362E+06 0.2478909E+06 0.1134652E+03
4 105270 270 105 165 60 0.7312202E+01 0.2515714E+06 0.2516261E+06 0.1227385E+03
5 105268 268 105 163 58 0.7324809E+01 0.2497035E+06 0.2497582E+06 0.1178416E+03
6 105267 267 105 162 57 0.7332857E+01 0.2487691E+06 0.2488239E+06 0.1149464E+03
7 106271 271 106 165 59 0.7306487E+01 0.2525039E+06 0.2525592E+06 0.1242633E+03
8 106269 269 106 163 57 0.7316995E+01 0.2506365E+06 0.2506918E+06 0.1199071E+03
9 107274 274 107 167 60 0.7281854E+01 0.2553061E+06 0.2553619E+06 0.1325240E+03
10 107272 272 107 165 58 0.7291935E+01 0.2534388E+06 0.2534946E+06 0.1282031E+03
11 107271 271 107 164 57 0.7298915E+01 0.2525046E+06 0.2525604E+06 0.1255323E+03
12 107270 270 107 163 56 0.7300343E+01 0.2515720E+06 0.2516278E+06 0.1243743E+03
13 108278 278 108 170 62 0.7259620E+01 0.2590401E+06 0.2590964E+06 0.1410800E+03
14 108277 277 108 169 61 0.7263104E+01 0.2581068E+06 0.2581632E+06 0.1393034E+03
15 108275 275 108 167 59 0.7272961E+01 0.2562395E+06 0.2562958E+06 0.1349762E+03
16 198273 273 108 165 57 0.7281152E+01 0.2543727E+06 0.2544290E+06 0.1311432E+03
17 110275 275 110 165 55 0.7245740E+01 0.2562443E+06 0.2563018E+06 0.1408958E+03
18 110282 282 110 172 62 0.7224057E+01 0.2627767E+06 0.2628341E+06 0.1527893E+03
19 112279 279 112 167 55 0.7201945E+01 0.2599832E+06 0.2600417E+06 0.1548508E+03
20 112286 286 112 174 62 0.7185912E+01 0.2665143E+06 0.2665728E+06 0.1655217E+03
21 113285 285 113 173 60 0.7168760E+01 0.2665179E+06 0.2665769E+06 0.1696442E+03
22 113284 284 113 172 59 0.7173337E+01 0.2655842E+06 0.2656432E+06 0.1674371E+03
23 113283 283 113 171 58 0.7173245E+01 0.2646518E+06 0.2647109E+06 0.1665652E+03
24 113282 282 113 170 57 0.7177131E+01 0.2637183E+06 0.2637774E+06 0.1645675E+03
25 113281 281 113 169 56 0.7176212E+01 0.2627862E+06 0.2628453E+06 0.1639325E+03
26 114283 283 114 169 55 0.7158593E+01 0.2637222E+06 0.2637819E+06 0.1690308E+03
27 114290 290 114 176 62 0.7148038E+01 0.2702522E+06 0.2703118E+06 0.1784806E+03
28 115290 290 115 175 60 0.7129986E+01 0.2702561E+06 0.2703162E+06 0.1829326E+03
29 115289 289 115 174 59 0.7133638E+01 0.2693226E+06 0.2693827E+06 0.1809359E+03
30 115288 288 115 173 58 0.7132842E+01 0.2683904E+06 0.2684505E+06 0.1802276E+03
31 115287 287 115 172 57 0.7135824E+01 0.2674571E+06 0.2675172E+06 0.1784331E+03
32 116294 294 116 178 62 0.7111165E+01 0.2739900E+06 0.2740507E+06 0.1914483E+03
33 116293 293 116 177 61 0.7111951E+01 0.2730573E+06 0.2731180E+06 0.1902580E+03
34 116292 292 116 176 60 0.7114608E+01 0.2721241E+06 0.2721848E+06 0.1885226E+03
35 116291 291 116 175 59 0.7114835E+01 0.2711916E+06 0.2712523E+06 0.1875000E+03
36 116290 290 116 174 58 0.7116715E+01 0.2702586E+06 0.2703193E+06 0.1859983E+03
37 118293 293 118 175 57 0.7078354E+01 0.2730645E+06 0.2731263E+06 0.1985357E+03
38 118294 294 118 176 58 0.7079403E+01 0.2739967E+06 0.2740585E+06 0.1992202E+03
39 118295 295 118 177 59 0.7078443E+01 0.2749295E+06 0.2749912E+06 0.2004954E+03
40 118296 296 118 178 60 0.7078998E+01 0.2758618E+06 0.2759236E+06 0.2013241E+03
41 118297 297 118 179 61 0.7077473E+01 0.2767947E+06 0.2768565E+06 0.2027690E+03
42 119295 295 119 176 57 0.7059040E+01 0.2749339E+06 0.2749962E+06 0.2054360E+03
45 120295 295 120 175 55 0.7038272E+01 0.2749387E+06 0.2750015E+06 0.2107797E+03
46 120296 296 120 176 56 0.7040502E+01 0.2758705E+06 0.2759334E+06 0.2111527E+03
47 120297 297 120 177 57 0.7041094E+01 0.2768029E+06 0.2768657E+06 0.2120076E+03
48 120298 298 120 178 58 0.7042875E+01 0.2777349E+06 0.2777977E+06 0.2125070E+03
49 120299 299 120 179 59 0.7042966E+01 0.2786674E+06 0.2787302E+06 0.2135083E+03

6 Conclusion

In this paper is presented an improved numerical generalization of Bethe-
Weizsacker mass formulae which describes the values of measured 2654 nuclear
mass in AME2012 nuclear database with residduals from (−2.00 to 2.20 MeV)
for nuclear, atomic mass, mass excess and in interval (−0.17 to 0.15 MeV) for
binding energy. The rediscovered in paper [1] well known proton and neutron
magic numbers as well the discovered (108, 124 for protons and 152, 202 for
neutrons) were confirmed. The first interesting application of the proposed ex-
plicit form of improved numerical generalization of Bethe-Weizsacker mass for-
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mulaeseems to be the calculation of two proton and neutron drip-lines and their
intercept is approximately in Z = 220, N = 345 and A = 565. Proposed
BW formulae can be used for calculation of not known nuclear mass, the total
and kinetc energy of proton, alpha, cluster decays and spontaneously fission.
The used in this paper approach for generalization of BW mass formulae can
be applied for the actualization the half-life models (see for example [37] which
describes the increasing volume for reasurching the problems in super heavy
nuclei stability islands.
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