Double-Beta Decay with Emission of Single Electron

A. Babič^{1,2}, D. Štefánik³, M.I. Krivoruchenko^{2,4,5}, F. Šimkovic^{1,2,3}

We study a new mode of the neutrinoless and two-neutrino double-beta decay in which a single electron is emitted from the atom. The other electron is directly produced in one of the available $s_{1/2}$ or $p_{1/2}$ subshells of the daughter ion. The neutrinoless electron-production mode $0\nu EP\beta^-$, which would manifest through a monoenergetic peak at the endpoint of the single-electron energy spectrum, is shown to be inaccessible to the future experiments. Contrary, its two-neutrino counterpart $2\nu EP\beta^-$ might have already influenced the single-electron spectra measured, e.g., for the isotope $^{100}{\rm Mo}$ in the experiment NEMO 3. We discuss the prospects for detecting these new modes also for other isotopes in the SuperNEMO upgrade.

¹Czech Technical University in Prague, 128 00 Prague, Czech Republic

²Joint Institute for Nuclear Research, 141980 Dubna, Russia

³Comenius University in Bratislava, 842 48 Bratislava, Slovakia

⁴Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia

⁵Moscow Institute of Physics and Technology, 141700 Moscow, Russia