Near-barrier Nucleon Transfer in Reactions ^{3,6}He + ⁴⁵Sc, ¹⁹⁷Au, ⁶⁴Zn

M.A. Naumenko¹, V.V. Samarin^{1,2},

The theoretical approach based on the numeric solution of the time-dependent Schrödinger equation (TDSE) [1,2] for the external neutrons of 6 He, 45 Sc, and 197 Au nuclei as well as the protons of 3 He nucleus is applied to the calculation of the experimental cross sections for formation of isotopes 46 Sc in reaction 6 He + 45 Sc [3], 196,198 Au in reaction 6 He + 197 Au [4,5], 65 Zn in reaction 6 He + 64 Zn [6], and 45 Ti in reaction 3 He + 45 Sc [7]. The contribution of fusion and subsequent evaporation to the experimental data is negligible in the case of 6 He + 197 Au reaction, whereas in the case of 6 He + 45 Sc reaction, it is quite large. The fusion-evaporation was taken into account using the NRV evaporation code [8]. Results of calculation demonstrate overall satisfactory agreement with the experimental data. The used realization of the TDSE method may also be applied to the calculation of reactions with cluster nuclei.

References

- [1] V.V. Samarin and K.V. Samarin, Bull. Russ. Acad. Sci. Phys. 76 (2012) 450-453.
- [2] V.V. Samarin, Phys. At. Nucl. 78 (2015) 128-141.
- [3] N.K. Skobelev et al., J. Phys. G 38 (2011) 035106.
- [4] Yu.E. Penionzhkevich et al., Eur. Phys. J. A 31 (2007) 185-194.
- [5] A.A. Kulko et al., J. Phys. G 34, (2007) 2297.
- [6] V. Scuderi et al., Phys. Rev. C 84 (2011) 064604.
- [7] N.K. Skobelev et al., Phys. Part. Nucl. Lett. 10 (2013) 410.
- [8] V.I. Zagrebaev *et al.*, NRV Web Knowledge Base on Low-energy Nuclear Physics [online resource], URL: http://nrv.jinr.ru/.

¹Joint Institute for Nuclear Research, 141980 Dubna, Russia

²Dubna State University, 141982 Dubna, Russia