Energy Density Functional Gradient Optimisation for the Description of Ground States in Deformed Nuclei

K. Shegunov

Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria

A Gogny interaction was used for the description of few nuclei arround $A \approx 100$ within a deformed Hartree-Fock framework [1]. In my work I discuss a method for an explicit multivariate gradient descent minimisation of the energy density functional for the description of the ground state in atomic nuclei. I present a way ensuring fast convergence of the minimization procedure [2], with a strict criterium for a local minimum of the energy density functional. The solution depends explicitly on the axial deformation of the nuclei, thus the binding energy is mapped as a function of the nucleus, and the global minima of the binding energy. Within this framework one could look for metastable states for different deformations of the nucleus.

Acknowledgements

This work was supported by *The Program to help young scientists at BAS*, under contract DFNP-50/21.04.2016

References

- [1] S. Goriely, S. Hilaire, M. Girod and S. Péru, Phys. Rev. Lett. 102 (2009) 242501.
- [2] R. McWeeny, Proc. R. Soc. A 235 (1956) 496-509.