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Abstract. Semi-exact, quasi-exact and conditionally-exact solutions of one-
particle equations are discussed. In particular, symmetry conditions under which
the Klein-Gordon and the Dirac equations are reducible to Schrödinger-like
form and, thus, the exact solubility of the Schrödinger equation implies that its
relativistic counterparts are also exactly solvable, are discussed. Another prob-
lem addressed in this report is the semi-exact, quasi-exact and conditionally-
exact solubility of the radial Schrödinger equations with power potentials. The
equations are shown to be semi-exactly solvable with solutions expressible in
terms of the Hessenberg determinants. Conditions under which quasi-exact so-
lutions exist are also presented.

1 Introduction

Usually one-particle eigenvalue problems have to be solved numerically. Several
exactly solvable cases, as for example harmonic oscillator or hydrogen atom,
play an important role in many branches of quantum mechanics. Quasi-exactly
solvable equations, where a finite number of solutions (usually just one) may
be expressed analytically, have been intensively studied over last two decades
[1,2]. The best known example is the Hooke atom, also known as harmonium [3,
4]. For equations referred to as conditionally-exactly-solvable analytic solutions
may be obtained for specific values of the potential parameters [5]. Finally, in
the case of semi-exactly-solvable equations the wave functions may be expressed
analytically, but the eigenvalues have to be derived numerically [6, 7].

In the relativistic case, the Dirac and the Klein-Gordon equations may be
conditionally reduced to a form analogous to the Schrödinger equation [8]. As
discussed in the next section, the relativistic equations with electrostatic compo-
nent of the vector potential equal to the scalar part of the potential, i.e.equations
describing systems with spin symmetry [9], are always reducible to a Schrödinger
like-equation with the energy-dependent effective mass [10].

One-particle potentials expressed as polynomials of the radial variable are
known as the power potentials. In the third section it is demonstrated that the
Schrödinger equations with power potentials are semi-exactly-solvable and their

∗This work is dedicated to the memory of Dr. Rossen Lubenov Pavlov
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solutions may be expressed in terms of the Hessenberg determinants [7, 11].
Conditions under which the equations with power potentials are either exactly
or quasi-exactly solvable are also presented [12].

Finally, in the last section, some examples of semi-exact solutions are briefly
discussed.

2 Relativistic Equations with Spin Symmetry

Let us consider a relativistic particle in the field of an electrostatic potential Ve

and a scalar potential Vs. A spinless particle is described by the Klein-Gordon
equation: [

p2 c2 + (mc2 + Vs)
2 − (E − Ve)2

]
Ψ(rrr) = 0, (1)

where all symbols have their usual meaning. After some simple rearrangement,
the equation may be rewritten as[

p2

2m
+ (Ve + Vs)

(
1− Ve − Vs

2mc2

)
+
E Ve

mc2
− E

(
1 +

E
2mc2

)]
Ψ(rrr), (2)

where E = E − mc2. If we set Ve = Vs = V/2, then (2) transforms to a
Schrödinger-like equation:[

p2

2M
+ V − E

]
Ψ(rrr) = 0, (3)

where∗

M ≡M(E) = m

(
1 +

E
2mc2

)
. (4)

A spin-1/2 fermion is described by the Dirac equation[ (
Ve + Vs +mc2 − E

)
I2 c (σσσ · ppp)

c (σσσ · ppp)
(
Ve − Vs −mc2 − E

)
I2

] [
Ψ L(rrr)
Ψ S(rrr)

]
= 0,

(5)
where I2 is 2×2 unit matrix. Taking Ve = Vs, after some simple algebra, we can
separate the equations for the large (upper) and the small (lower) component:[

(σσσ · ppp)2

2M
+ V − E

]
Ψ L(rrr) = 0, (6)

Ψ S(rrr) =
(σσσ · ppp)
2Mc

Ψ L(rrr), (7)

Since (σσσ · ppp)2 = ppp2 I2, solutions of (6) may be expressed in terms of solutions
of (3):

Ψ L(rrr) =

[
c1

(
1
0

)
+ c2

(
0
1

)]
Ψ(rrr), (8)

∗Some intuitive meaning of M can be derived from the observation that the relativistic energy-
momentum relation E2 = (mc2)2 + (pc)2, for E > mc2, can be rewritten as E = p2/(2M).

46



Exact Solutions of One-Particle Equations

with |c1|2 + |c2|2 = 1.
Let us note, that the energy spectraE of (3) and (6) are positive and bounded

from below. The non-relativistic limits may be obtained in a straightforward way
by setting M = m. The discussion of the negative energy solutions is beyond
the scope of this report. An interested reader is referred to, e.g., [8].

Let ESh[m] be an eigenvalue of the Schrödinger Hamiltonian for a particle
with mass m [

p2

2m
+ V − ESh[m]

]
ΨSh(rrr) = 0. (9)

By comparing (9) and (3) one can see that

E = ESh[M(E)]. (10)

The explicit expression for E may be obtained by solving (10) with respect to E .
A similar procedure may be applied to the wave-functions. Thus, if the solution
of the Schrödinger equation is known, then the corresponding solution of either
Klein-Gordon or Dirac equation with spin symmetry may be obtained by some
algebraic manipulation.

In some cases the mass-dependence of the Schrödinger energies is particu-
larly simple. For example, if V = rn, where r = |rrr| then, as one can see by the
application of a scaling procedure,

ESh[m] = m−n/(n+2)ESh[1]. (11)

Then, in this case (10) can be rewritten as

E
(

1 +
E

2mc2

)n/(n+2)

= ESh[m]. (12)

In particular, for the Coulomb potential n = −1. Consequently, the energy
levels of a relativistic particle with spin symmetry in the central Coulomb field
are given by the following formula

E =
ESh[m]

1− ESh[m]/(2mc2)
. (13)

After the substitution of ESh[m] = −mZ2e4/(2n2~2) we get

E =
−mZ2e4

2n2~2 + Z2e4/2c2
, (14)

equivalent to equation (3.4) of reference [8].

3 Schrödinger Equation with Power Potentials

In this section we are concerned with solutions of the radial Schrödinger equa-
tion [

p2

2m
+ V(r)− E

]
Ψ(r, θ, φ) = 0, (15)
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where V is a power potential. After the elimination of the angular part, the
equation may be rewritten in the normal form[

d2

dr2
−W(r)

]
ψ(r) = 0. (16)

In order to simplify our analysis we assume that

W(r) =

N∑
j=−2

αj r
j , (17)

with N = 2m - an even integer, and αN > 0. A discussion of the case of the
odd N may be found in [7]. A study on the potentials with αN < 0, when the
bound-state solutions do not exist, suggested to the author by by Hitoshi Nakada
during a discussion at the Workshop, will be presented elsewhere.

It is convenient to express the radial wave-function in the form

ψ(r) = F0(r)P (r)F∞(r), (18)

where F0 and F∞ are derived directly from the form of the potential to describe
the asymptotic behavior of the solutions at r → 0 and r → ∞, respectively,
and

P (r) =

∞∑
n=0

an r
n. (19)

We select the asymptotic factors corresponding to the regular (square-integrable)
solutions if P (r) doesnot influence the asymptotic behavior of ψ(r). After some
standard algebra we get:

F 0(r) = rλ+1, λ = ±
√

1

4
+ α−2 −

1

2
, (20)

where the positive root corresponds to the solutions regular at r → 0,

F∞(r) = e−η(r), η(r) =

m+1∑
n=1

βn
n
rn, (21)

where

βm+1 =
√
αN, (22)

βm+1−k =
1

2βm+1

[
α2m−k −

k−1∑
i=1

βi+m−k+1βm−i+1

]
,

k = 1, 2, . . . ,m.
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The substitution to the original equation results in an (m + 2)-term recurrence
relation defining the expansion coefficients [7]:

an+1 =

m∑
j=0

g
(j)
n−jan−j . (23)

Since ak = 0 for k < 0, we have g(j)
k = 0 if k < 0. For k ≥ 0,

g
(j)
k =

(2k + j + 2λ+ 2)βj+1 −
∑j
i=1 βiβj−i+1 + αj−1

(k + j + 1)(k + j + 2λ+ 2)
. (24)

The normalization condition P (0) = a0 = 1 has been assumed.
If the recurrence (24) terminates then P (r) is a polynomial and the wave-

function may be expressed analytically as the product (18) of the polynomial
and the asymptotic factors. These solutions are referred to as the polynomial
solutions. Most of square-integrable solutions are non-polynomial. One can
show [7, 11, 12] that for the power potentials with even maximum power N one
can always select the parameters of W(r) in such a way that a polynomial solu-
tion (usually one) exists. It is surprising that for odd N polynomial solutions do
not exist [7].

3.1 Hessenberg determinants

Square band matrices with upper bandwidth equal to 1 and the lower bandwidth
equal to u are referred to as lower Hessenberg matrices [13]. We are concerned
with a special kind of these matrices in which the super-diagonal elements are
equal to −1. We denote the Hessenberg matrix as

MMM(u)
n (GGG) ≡MMM(u)

n (G0,G1, . . . ,Gu) (25)

where
G0 =

[
g

(0)
0 , g

(0)
1 , . . . , g(0)

n

]
is the diagonal and the sub-diagonals are

Gj =
[
g

(j)
0 , g

(j)
1 , . . . , g

(j)
n−j

]
, j = 1, 2, . . . , u.

For example, if n = 6 and u = 2 then

MMM(2)
6 (GGG) =



g
(0)
0 −1 0 0 0 0

g
(1)
0 g

(0)
1 −1 0 0 0

g
(2)
0 g

(1)
1 g

(0)
2 −1 0 0

0 g
(2)
1 g

(1)
2 g

(0)
3 −1 0

0 0 g
(2)
2 g

(1)
3 g

(0)
4 −1

0 0 0 g
(2)
3 g

(1)
4 g

(0)
5


,
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GGG = [G0,G1,G2]

Determinant of the Hessenberg matrix is named the Hessenberg determinant and
denoted M (u)

n (GGG).

3.2 Semi-exact solutions

By using the Laplace formula, one can easily demonstrate that the Hessenberg
determinants fulfill the same recurrence relation as the coefficients of the expan-
sion (19) of P (r). Then we have

M
(m)
n+1(GGG) =

m∑
j=0

g
(j)
n−jM

(m)
n−j(GGG) (26)

with
GGG = [G0,G1, . . . ,Gm] .

The recurrence relations (23) and (26) define, respectively, an and M (m)
n in a

unique way (in both recurrences we set the same initial conditions, i.e. a0 =
M0 = 1 and ak = Mk = 0 if k < 0. Thus, we conclude that

an = M (m)
n . (27)

Since the elements of the determinants are defined in (24), we got explicit
analytical expressions for the expansion coefficients of P (r) and, consequently,
explicit expression for the formal solution (18) of the Schrödinger equation [7].
The solutions are square integrable only if the values of E ere equal to the eigen-
values of the Hamiltonian. Therefore our solutions are semi-exact - we know
the analytical form of the wave-function, however the energies have to be deter-
mined separately (the solutions corresponding to the values of the parameter E
which are not equal to the Hamiltonian eigenvalues are not square integrable).

4 Examples

The number of terms in the recurrence relations (23) and (26) is determined by
the highest power of r in the power potential. Thus, if N = 0 we have two-term
recurrences. They define exactly solvable hypergeometric equations. The quan-
tization condition for E terminates the recurrence. The best known example is
the hydrogen atom. Three-term recurrences correspond to the potentials with
N = 2. They define quasi-exactly and semi-exactly solvable Heun equations.
The polynomial solutions are obtained if E and one parameter in the potential
are properly constrained. The harmonium (the Hooke atom) and the shifted har-
monic oscillator belong to the most commonly known examples. In a general
case of an even N we have N/2 + 2-term recurrences. For the polynomial solu-
tions E and N/2 parameters in the potential have to be constrained. In general
the equations are semi-exactly solvable.

50



Exact Solutions of One-Particle Equations

4.1 Two-term recurrence (N = 0)

In this case the Schrödinger equation is exactly solvable, the condition of ter-
mination of the recurrence defines the Hamiltonian eigenvalues and all bound
states are described by the polynomial solutions. We have m = 0,

W(r) =
α−2

r2
+
α−1

r
+ α0, (28)

η = r
√
α0, (23) is reduced to an+1 = g

(0)
n an with a0 = 1 and

g(0)
n =

2(n+ λ+ 1)
√
α0 + α−1

(n+ 1)(n+ 2λ+ 2)
. (29)

The recurrence terminates at n = p if g(0)
p = 0, i.e.if

√
α0 =

−α1

2(p+ λ+ 1)
. (30)

According to (27),

an = M (0)
n =



g
(0)
0 −1 0 · · · 0

0 g
(0)
1 −1 · · · 0

0 0 g
(0)
2

. . . 0
...

...
. . . . . . −1

0 0 0 0 g
(0)
n−1


(31)

and the radial wave-function (18) corresponding to n=p may be expressed in a
compact form

ψp(r) = rλ+1



r0 r1 r2 · · · rp−1 rp

g
(0)
0 −1 0 · · · 0 0

0 g
(0)
1 −1 · · · 0 0

0 0 g
(0)
2

. . . 0 0
...

...
. . . . . . −1 0

0 0 0 0 g
(0)
p−1 −1


e−r
√
α0 . (32)

The Laplace formula, implies that the determinant is equal to
∑p
n=0 anr

n.
In the case of a hydrogen-like atom α−2 = l(l + 1), λ = l, α−1 = −2Z

and α0 = −2E . Equation (30) transforms to the hydrogenic energy formula
and from (32) one can extract the determinantal representation of the Laguerre
polynomial L2l+1

p+2l+1(ρ), where ρ = 2Z/(p+ l + 1).
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4.2 Three-term recurrence (N = 2)

In this case the radial Schrödinger equation is the same as the normal form of
the biconfluent Heun equation [14]. It may be obtained in the process of solving
the problem of three-particle Hooke’an systems [2]. The Hooke atom (harmo-
nium), received much attention starting from the seminal work by Kestner and
Sinanoğlu [15] who noticed in 1962 that the Schrödinger for two electrons in-
teracting by Coulomb forces and confined in a central harmonic potential is sep-
arable. Soon after Santos [16] demonstrated that the problem is quasi-exactly
solvable. The results of Santos, unnoticed for several decades, have been redis-
covered by Taut [3] and is mostly linked to his name. The structure of the energy
spectrum of harmonium has been studied in [4].

It is convenient to express W(r) in the form

W(r) =
λ(λ+ 1)

r2
+
z

r
+ ω2(r − r0)2 − 2E . (33)

Then α−2 = λ(λ+ 1), α−1 = z, α0 = (ω r0)2 − 2E , α1 = −2ω2r0, α2 = ω2,
β1 = −r0/ω, β2 = ω, η = ω r (r/2 − r0). The three-term recurrence relation
reads

an+1 = g(0)
n an + g

(1)
n−1 an−1 (34)

and

g(0)
n =

z − 2ωr0(n+ λ+ 1)

(n+ 1)(n+ 2λ+ 2)
(35)

g(1)
n =

−2E + 2ω(n+ λ+ 3/2)

(n+ 2)(n+ 2λ+ 3)
. (36)

For the polynomial solution the recurrence (34) has to terminate. Assume that
an 6= 0 for n = p and an = 0 if n > p. After a simple analysis we can see that
this requirement implies two conditions:

(1) : g(1)
p = 0, i.e. E = ω(p+ λ+ 3/2), (37)

(2) : M
(1)
p+1(G0,G1) = 0. (38)

The second condition defines a relation between the parameters in W. For ex-
ample, assuming for simplicity r0 = 0, condition (2) for p = 1 implies

g
(0)
0 g

(0)
1 + g

(1)
0 = 0 ⇒ z2 = 4ω(λ+ 1)

For p = 2 we have

g
(0)
0 g

(0)
1 g

(0)
2 + g

(0)
0 g

(1)
1 + g

(0)
2 g

(1)
0 = 0

and, after some simple algebra, z = 0 or z2 = 4ω(4λ + 5). More detailed
analysis may be found in [17, 18].
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As we see, the polynomial solutions exist for a specific set of the potential
parameters. In general, for a given value of p there exits one set of such pa-
rameters (except for the cases of multiple solutions of the algebraic equations).
This means that for each p we have at most several polynomial solutions. The
remaining square-integrable solutions are non-polynomial i.e.the recurrence re-
lation defining coefficients an, n = 1, 2, . . .∞ does not terminate. The conver-
gence may be obtained only for the exact eigenvalues E . Since these eigenvalues
can only be derived with a finite accuracy, the expansion (19) has an asymptotic
character and the best approximation is obtained if it is cut at a certain value of
n.

5 Conclusions

• Relativistic Klein-Gordon and Dirac equations with spin symmetry are
reducible to a Schrödinger like equation with energy-dependent mass.
Consequently, the equations are exactly (quasi-exactly, semi-exactly, con-
ditionally-exactly) solvable if the corresponding Schrödinger equation is
exactly, etc., solvable.

• The Schrödinger equation with an arbitrary power potential is semi-exactly
solvable and the solutions may be expressed as power series with coeffi-
cients equal to the Hessenberg determinants.

• Square-integrable wave-functions may be obtained by the substitution of
the appropriate energy values to the general solutions. Since the energy
eigenvalues are represented by finite strings of digits, the expansions are,
in fact, asymptotic series.

• For potentials with an even maximum power of r the polynomial so-
lutions exist if the parameters in the potential fulfill certain conditions.
Schrödinger equations with odd-maximum-power potentials do not have
polynomial solutions.

• The presented approach may be generalized to other forms of potentials.
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