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Abstract. We review predictions for the interaction part of the symmetry en-
ergy from different microscopic approaches and compare them with updated
constraints recently extracted at GSI. The discussion is then extended to the
neutron skin thickness in 208Pb and its relation to the density derivative of the
symmetry energy. We also discuss briefly some preliminary neutron star predic-
tions we have obtained based on chiral nuclear forces.

1 Introduction

The energy per particle as a function of density in infinite nuclear matter, known
as the equation of state (EoS), contains rich information about the nature of the
nuclear force in hadronic medium. Selected reaction observables and other nu-
clear properties have been found to be sensitive to the EoS, and therefore their
measurements can provide useful constraints for the latter. The well-known ex-
pression for the EoS of isospin asymmetric matter as a function of the neutron
excess parameter brings into focus the symmetry energy, a quantity of fundamen-
tal importance for a variety of neutron-rich systems. Presently our knowledge of
the symmetry energy is limited, particularly its density dependence around and
above saturation density. From the experimental side, heavy-ion (HI) reactions
are an established way to seek such constraints, based on the fact that the EoS is
an important part of the input in transport models describing HI collisions.

Other nuclear properties have been found highly sensitive to specific aspects
of the EoS of asymmetric matter. The neutron skin thickness, for instance, is
sensitive to the slope of the symmetry energy, which, in turn, determines the
pressure which pushes neutrons towards the outer region to form the skin. A
strong correlation is also found between the pressure in the interior of a heavy
nucleus and the radius of the average-mass neutron star.

Earlier data from the FOPI-LAND experiment [1, 2] were reanalysed in
Ref. [3] and compared with transport model calculations. Those analyses sug-
gested a softer-than-linear to linear term for the potential energy part of the sym-
metry energy, the latter being parametrized as a power law. More recently, the
directed and elliptic flows of neutrons and light charged particles in the reac-
tion 197Au + 197Au at 400 MeV per nucleon were measured in the ASY-EOS
experiment at GSI [4]. The updated findings confirm a moderately soft density
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dependence, but in Ref. [4] the authors report a more stringent constraint up to
twice normal density.

As updated constraints have become available, comparison with microscopic
calculations is especially important and timely. Within that spirit, modern pre-
dictions of the symmetry energy based on chiral effective field theory (EFT) [5]
are reviewed and discussed, following closely Ref. [6]. For comparison, other
approaches are also considered, such as those based on meson-theoretic or phe-
nomenological nucleon-nucleon (NN) potentials and three-nucleon forces (3NF).
These approaches, which were particularly popular in the 1990’s and are still fre-
quently used today, follow a very different philosophy. Thus, their inclusion in
the comparison will provide a realistic measure of the spreading of contempo-
rary theoretical predictions.

Before proceeding, we recall that the parametrization used in the analysis of
Ref. [4] is

esym(ρ) = 22 MeV
( ρ
ρ0

)γ
+ 12 MeV

( ρ
ρ0

)2/3

, (1)

which fixes the symmetry energy at ρ0 to be 34 MeV. The power law coefficient,
γ, is reported as 0.72 ± 0.19. The same coefficient was found to be 0.9 ± 0.4
from the FOPI-LAND data [1–3]. Other useful quantities for the discussion
which follows are the so-called “L” coefficient,

L = 3ρ0

(∂esym
∂ρ

)
ρ0

, (2)

and the obviously related symmetry pressure, P0 = ρ0L/3.
Recalling the remarkable correlation between neutron skins and the radii

of compact stars, due to the chief role that neutron matter pressure plays in
both systems, we close the paper with a brief discussion of some preliminary
predictions of neutron star radii based on chiral EFT [7].

2 Theoretical Input

2.1 The chiral EoS

Chiral EFT is presently a popular approach which starts from a low-energy re-
alization of quantum chromodynamics [5]. In chiral EFT, one retains the basic
degrees of freedom typical of low-energy nuclear physics, pions and nucleons,
while fitting unresolved nuclear dynamics at short distances to the properties of
two- and few-nucleon systems. More specifically, EFT is a theory in which the
properties governed by low-energy physics are specified by the choice of de-
grees of freedom and symmetries, and can be computed systematically. Short-
range physics is included through the processes of regularization and renormal-
ization. The microscopic EoS of symmetric nuclear matter and neutron matter
based on chiral EFT employed here are calculated as described in Ref. [8]. The
predictions at next-to-next-to-next-to-leading order (N3LO) and at next-to-next-
to-leading order (N2LO) are based on high-precision chiral NN potentials at
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the respective orders [9] together with the leading 3NF, which is treated as in
Ref. [10].

Since estimating the truncation error at N3LO requires the predictions at
N2LO, those will be shown as well. (N4LO predictions are not yet available.)
Note that the N2LO calculation is complete, in the sense that both the two-
nucleon force (2NF) and the 3NF are consistently at next-to-next-to-leading or-
der. This is not the case, though, for the N3LO calculation, where the 3NF at
N2LO is employed.

2.2 Relativistic meson-theoretic potentials and the Dirac–Brueckner–
Hartree–Fock approach to the equation of state

In contrast to conventional Brueckner theory, the relativistic approach to nuclear
matter, particularly the Dirac-Brueckner-Hartree-Fock (DBHF) approximation,
has the inherent ability to predict realistic values for the saturation energy and
density of nuclear matter. The characteristic feature of the DBHF approach is
the fact that important 3NF are effectively taken into account through the density
dependence of the nucleon spinors. This effective 3NF, which originates from
virtual excitations of nucleon-antinucleon pairs, provides a strong (repulsive and
density-dependent) saturating effect and, thus, an important mechanism missing
from conventional Brueckner-Hartree-Fock calculations. For a recent review,
including considerations of isospin asymmetry, see Ref. [11].

2.3 Variational approaches

Alternatively, the energy per particle in nuclear matter can be obtained com-
bining the 2NF with meson-theoretic or phenomelogical 3NF to generate the
additional repulsion essential to improve saturation. Nonrelativistic calculations
of symmetric and neutron matter based on variational methods [12] and phe-
nomenological 2NF and 3NF have been used extensively. We also represent this
point of view by including predictions [13] based on popular phenomenological
2NF and 3NF from the 90’s, namely the Argonne v18 NN potential [14] together
with the Urbana model IX [15] 3NF. These will be referred to as the “APR”
predictions.

3 Predictions and Discussion

We calculate the symmetry energy for the theories and models mentioned in the
previous section and subtract the kinetic contribution. The microscopic values of
the potential energy part are then fitted with a power law. for each of the models
being considered, ρ0 is the actual saturation density for that particular EoS.

In Figure 1, we display the potential energy part of the symmetry energy as
obtained from microscopic calculations at N2LO (solid green line) and at N3LO
(solid red line), together with approximations given by functions of the form

epotsym = V0(ρ/ρ0)γ , (3)
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Figure 1. Microscopic predictions of the interaction part of the symmetry energy at N2LO
and N3LO of chiral perturbation theory, and corresponding power-law fits. See inset for
the definition of the various curves.

dashed green for N2LO and dashed red for N3LO. The fit is done by searching
for the single parameter γ, setting V0 equal to the microscopically predicted
value at the appropriate saturation density. The density range considered in the
fit covers approximately from 0.03 to 0.33 fm−3, with all points carrying the
same weight.

The theoretical predictions appear reasonably described by the simple ansatz
up to their respective saturation densities and somewhat above it, whereas the
constraint should be applicable up to about 2ρ0, which amounts to approxi-
mately 0.3 fm−3 by the definition of Ref. [4]. Similar considerations apply to
the fits of the symmetry energies obtained from the other EoS (DBHF and APR),
see Ref. [6].

With regard to the N3LO predictions, it is important to keep in mind that
they must be seen in the context of EFT theoretical uncertainties. Therefore, in
Figure 2 the N3LO predictions are shown with their estimated truncation error.
In Figure 2, the shaded area represents the empirical constraint. The predic-
tions fall within the empirical constraints at the lower densities but are otherwise
softer.

Although the parametrization given in Eq. 1 was found to be consistent with
the reaction observables measured in the GSI experiment, here we observe that
it would be interesting to move beyond the power-law parametrization when
analyzing elliptic-flow data. A moderately soft (less than linear) dependence is,
indeed, preferred by microscopic models, but Eq. 1 is overall not a satisfactory
representation of these theoretical predictions.
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Figure 2. Microscopic predictions of the interaction part of the symmetry energy at N3LO
with EFT truncation error. The shaded area shows the empirical constraint from Ref. [4].

Next we extend the discussion to the neutron skin of 208Pb in relation to
density derivatives and pressure. The reader is referred to Ref. [6] and references
therein for details on the neutron skin calculations.

In Table 1, for values of γ spanning the uncertainty of the ASY-EOS con-
straint, we show (second, fourth, and fifth columns, respectively), the skin thick-
ness of 208Pb, theL parameter, defined in Eq. (2), and the symmetry pressure P0.
This confirms that the skin is sensitive to the pressure in the neutron-enriched
core of 208Pb which pushes excess neutrons towards the low-density edges of
the nucleus.

On the other hand, the average density in nuclei is less than saturation density
and, therefore, typical nuclear observables (such as, for instance, those used
to construct phenomenological forces) actually probe densities somewhat lower
than the one of normal saturated matter. Therefore, Table 1 also shows how the
slope of the symmetry energy at ρ=0.1 fm−3 varies in relation to the neutron
skin (third column).

Table 1. Neutron skin (S) of 208Pb with varying power law, γ, in the interaction symmetry
energy within the range determined by the ASY-EOS analysis. The third column displays
the the slope of the symmetry energy at about 2/3 of saturation density, followed by the
L parameter and the symmetry pressure. For further details, see discussion in the text.

γ S (fm)
∂esym
∂ρ

(MeV fm3) L (MeV) P0 (MeV/fm3)

0.53 0.14 154 60.1 3.14
0.72 0.18 177 72.6 3.80
0.91 0.21 195 85.2 4.45
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Figure 3. Relation between the L parameter and the neutron skin in 208Pb. Blue shaded
area: empirical constraint for L and corresponding constraint for the neutron skin. Green
area: Predictions from Table 2. The predictions at N3LO with their truncation error
produce the pink region.

The observations collected above can be more easily captured in a visual
way, as presented in Figure 3. The area shaded in blue is obtained from the
empirical constraint for L and the corresponding constraint for the neutron skin.
Including the predictions from Table 2 generate the green area. Finally, the pre-
dictions at N3LO with their truncation error produce the pink region. Clearly, the
uncertainty in the density derivative is much larger than could be inferred from
the blue area, that is, from the correlation based on the empirical information.

In Ref. [4], the authors do mention that the sharp value of epotsym(ρ0) is the
result of choosing a power law as in Eq. (1) and that using lower values of

Table 2. As in Table 1, but for each of the theoretical approaches under consideration.

Theor. Approach S (fm)
∂esym
∂ρ

(MeV fm3) L (MeV) P0 (MeV/fm3)

DBHF 0.16 135 46.8 2.45
N3LO 0.17 148 47.5 2.50
APR 0.18 158 65.0 3.43

N2LO 0.20 176 72.0 3.79
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epotsym(ρ0) leads to lower values of L, still within acceptable error margins. How-
ever, the results from Ref. [16] (which are based on Skyrme phenomenology),
are no longer met with the alternative parametrization. The results which have
been reviewed here show that adhering to Eq. (1) is not recommendable from
the theoretical standpoint.

4 Preliminary Neutron Star Predictions

The EoS provides the link between the structure of compact stars and the physics
of neutron-rich nuclei. To investigate the former, EoS predictions must be avail-
able at the typical central densities of compact stars, which can exceed several
times the density of normal saturated matter.

Chiral EFT is a low-energy theory and thus there are limitations to its do-
main of validity. First, the chiral symmetry breaking scale, Λχ ≈ 1 GeV, limits
the momentum energy regions where pions and nucleons are the appropriate de-
grees of freedom. Further, the cutoff parameter Λ appearing in the regulator
function suppresses high momentum components (which should not impact the
prediction of low-energy observables). The degree of suppression depends of
course on the strength of the cutoff.

The high densities encountered in the core of neutron stars correspond to
Fermi momenta which are outside the reach of chiral EFT and thus methods to
extend the predictions must be employed. A reasonable strategy to extrapolate
chiral predictions to high densities is based on the consideration that, for a very
large number of existing EoS, the pressure as a function of density (or mass
density) can be fitted by piecewise polytropes, namely functions of the form
P = αρΓ [18]. (In our notation, ρ is the baryon density.) With this observation
as a guideline, we fit the pressure obtained from the chiral EoS with polytropes
and use them to extend the predictions to higher densities.

Figure 4 shows the pressure in neutron matter as a function of density for the
chiral EoS at N2LO and N3LO. Note that the predictions at N2LO are necessary
to estimate the truncation error, and thus we will include them throughout the
paper. The densities between approximately 2ρ0 and 3ρ0, where ρ0 has been
defined previously, enclose the highest density region at which the calculations
have been conducted. Comments are in place concerning the robustness of those
predictions. Keeping in mind that our typical cutoff is in the order of 500 MeV,
one should consider the possibility of “cutoff artifacts” when the typical momen-
tum for the system under consideration becomes close to that value. Now, at a
density of about 2ρ0, the Fermi momentum of neutrons in pure neutron matter is
approximately 400 MeV. This is the highest rather than the typical momentum
of the system, which is considerably lower. Thus, we expect the calculations at
that density to be sound. For the last calculated density, the highest momentum
of the neutrons is about 470 MeV, which is close to the value of our typical cut-
off but, again, larger than the average momentum. As a preliminary, exploratory
step, we will push the calculation to this limit [7].
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Figure 4. (Color online) Pressure in neutron matter as a function of density at the indi-
cated orders of chiral perturbation theory. The cutoff is equal to 500 MeV. In each case,
the dashed curves are polytropes fitted to the high density parts of the predictions.

We fit the high density part of the pressure with a function of polytropic
form, P (ρ) = αρΓ, and determine the adiabatic index Γ. In fact, we take the

fitting function to be P (ρ) = P2ρ0

(
ρ

2ρ0

)Γ

, with P2ρ0 the theoretical pressure at
2ρ0, so that the fit is exact at 2ρ0 and well constrained around this density, as
seen from Figure 4.

We then use the polytrope to extend the pressure and energy density past the
theoretically calculated range. In this way, we exploit the theoretical predictions
as long as possible, having gained some confidence from the observation that no
cutoff artifacts, which might be signaled by a reduced growth in pressure, are
apparent from Figure 4.

We are now in the position to proceed with the solution of the Tolman-
Oppenheimer-Volkoff (TOV) [19] star structure equations for central densities
up to several times normal density. In this very preliminary step, we will con-
sider stars consisting only of pure neutron matter.

We will focus our attention on the most probable mass of a neutron star,
which is approximately 1.4 M�. For such stars, typical central densities are a
few times normal density and, therefore, the predictions rely on the extrapolation
to a much lesser extent than for heavier stars, particulary maximum-mass stars.

In Table 3, we report the radii at N2LO and N3LO, respectively, along with
cutoff dependence. The results can be stated as:

RN2LO = 13.3± 0.3 RN3LO = 11.6± 0.3 . (4)

91



F. Sammarruca

Table 3. Radius of a neutron star with M=1.4 M� at the given order and cutoff. In each
case, the pressure in neutron matter at ρ0 is also shown.

Order Λ (MeV) R (km) PNMρ0
(MeV/fm3)

N3LO 450 11.34 2.59
500 11.88 2.46
600 11.51 2.11

N2LO 450 13.38 3.96
500 13.53 3.94
600 12.98 3.34

Estimating the truncation error from the absolute value of the difference be-
tween the predictions at N2LO and N3LO (a pessimistic estimate), we quote our
current results at N3LO as

RN3LO = 11.6± 1.7 . (5)

Because cutoff uncertainty for the radius appears to be much smaller than the
one due to truncation, we will ignore it in later considerations.

The above may help us understand to which degree the pressure in neutron
matter around saturation can constrain the radius of a 1.4M� (pure) neutron star.
To that end, we estimate the corresponding uncertainty on the pressure around
saturation and report the result, at N3LO, as PNMρ0

= 2.4± 0.7 MeV fm−3.
This uncertainty is quite large, and should become smaller in the near future

due to both improved experimental constraints and refinements in the theory.
One may then conclude that the pressure around saturation is in principle capable
of providing a considerable constraint for the radius. In other words, improved
knowledge of the density slope of neutron matter at saturation, namely at den-
sities within the reach of terrestrial measurements, is likely to provide stringent
boundaries for the radius of the typical-mass neutron star.

We also point out the analysis in Ref. [20], where the overall error was esti-
mated from uncertainty in the many-body forces (due to variations of the cutoff
and of the low-energy constants (LECs) ci appearing in the 3NF and obtained
from πN scattering), and from the extrapolation to high densities. The latter was
performed using piecewise polytropes which can mimic a large set of existing
neutron matter EoS with matching densities as free parameters [18]. The range
for the radius of a 1.4 M� pure neutron star was reported to be R=9.3-13.3 km.
In a later study [17], a range R=9.7-13.9 km was found for a neutron star with
a mass of 1.4 M�. (With regard to variations of the πN LECs to estimate the
uncertainty in the chiral predictions, we like to point out, in passing, that we
disagree with this method in view of most recent and very accurate πN LECs
determination [21]. We take the position that order-by-order considerations are
the correct way to estimate chiral uncertainties.)

92



Chiral Effective Field Theory in Nucleonic Matter

5 Conclusions

Theoretical calculations of the symmetry energy, in particular from modern ab
initio predictions, are timely and important as they complement on-going and
future experimental efforts. Existing predictions for the interaction part of the
symmetry energy have been explored in the light of new and more stringent
constraints recently obtained for this quantity. We considered a few but fun-
damentally different approaches to obtain a realistic idea of the spreading in
microscopic predictions.

We find that the simplest assumption of a single-term power law does not
capture the density dependence of the interaction symmetry energy for the the-
ories which we have considered. The N3LO prediction is generally softer than
the constraint.

The focus then moves to the neutron skin thickness of 208Pb. Caution must
be excercised with regard to the possibility of constraining the density slope from
the knowledge of the skin based only on correlations obtained with families of
simple phenomenological interactions, as the latter procedure may underesti-
mate the uncertainties.

We also briefly reviewed our preliminary predictions of neutron star radii,
with emphasis on the role of the pressure around normal density in the formation
of both the neutron skin and the radius of a typical neutron star. Our ultimate
goal is to produce systematic order-by-order predictions of neutron star masses
and radii with a β-equilibrated EoS based on chiral EFT.
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