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Abstract. The symmetry energy and its temperature dependence for isotopic
chains of even-even Ni, Sn, and Pb nuclei is studied in the framework of the local
density approximation (LDA). The Skyrme energy density functional with two
Skyrme-type effective interactions, SkM* and SLy4, is used in the calculations.
The temperature-dependent local proton and neutron densities, as well as the
kinetic energy densities, are calculated through the HFBTHO code that solves
the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical
transformed deformed harmonic-oscillator basis. In addition, two other den-
sity distributions of 208Pb, namely the Fermi-type density determined within
the extended Thomas-Fermi (TF) method and symmetrized-Fermi local density
obtained within the rigorous density functional approach, are used. Alternative
ways to calculate the symmetry energy coefficient within the LDA are proposed.
The results for the thermal evolution of the symmetry energy coefficient in the
interval T = 0–4 MeV show that its values decrease with temperature. The
temperature dependence of the neutron and proton root-mean-square radii and
corresponding neutron skin thickness is also investigated. The results show that
the larger temperatures lead to a substantial increase of the neutron radii and
skins.

1 Introduction

The nuclear symmetry energy (NSE), as a fundamental quantity in nuclear physics
and astrophysics, represents a measure of the energy gain in converting asym-
metric nuclear matter to a symmetric system [1–3]. Its value depends on the
density ρ and temperature T . Experimentally, the nuclear symmetry energy is
not a directly measurable quantity and is extracted indirectly from observables
that are related to it (e.g., [4, 5]). A sensitive probe of the nuclear symmetry
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energy is the neutron-skin thickness of nuclei (see, for example, Ref. [6] and
references therein).

In the present work, apart from the ρ-dependence investigated in our pre-
vious works [7–9], we study also the temperature dependence of the symmetry
energy in finite nuclei within the local density approximation [10–13] with some
modifications (see also our paper [14]). We explore the thermal evolution of the
symmetry energy coefficient for Ni, Sn, and Pb isotopic chains in the interval
T=0–4 MeV using different model temperature-dependent local density distri-
butions for these nuclei. The temperature-dependent densities of these nuclei are
calculated within a self-consistent Skyrme-HFB method using the cylindrical
transformed deformed harmonic-oscillator basis (HFBTHO densities) [15, 16].
The kinetic energy density is calculated either by the HFBTHO code or by the
TF expression up to T 2 term [17]. We have used two parametrizations of the
Skyrme force, namely, SLy4 and SkM*, which were able to give an appropriate
description of bulk properties of spherical and deformed nuclei in the past. In
addition, we present some results for the 208Pb nucleus with densities obtained
within the ETF method [18, 19] and the rigorous density functional approach
(RDFA) [20]. The effect of temperature on the rms radii of protons and neutrons
and the formation of neutron skin in hot nuclei is also analyzed and discussed.

2 Theoretical Formalism

For finite systems, different definitions of the symmetry energy coefficient and
its temperature dependence are considered in the literature. In the present work
we develop an approach to calculate the symmetry energy coefficient for a spe-
cific nucleus starting with the LDA expression given in [10, 11]:

esym(A, T ) =
1

I2A

∫
ρ(r)esym[ρ(r), T ]δ2(r)d3r. (1)

In Eq. (1) I = (N − Z)/A, esym[ρ(r), T ] is the symmetry energy coefficient
at temperature T of infinite nuclear matter at the value of the total local density
ρ(r) = ρn(r) + ρp(r), δ(r) = [ρn(r) − ρp(r)]/ρ(r) is the ratio between the
isovector and the isoscalar parts of ρ(r), with ρn(r) and ρp(r) being the neutron
and proton local densities. The symmetry energy coefficient esym(ρ, T ) can be
evaluated in different ways. Following Refs. [10, 13], we adopt in this work the
definition

esym(ρ, T ) =
e(ρ, δ, T )− e(ρ, δ = 0, T )

δ2
, (2)

where e(ρ, δ, T ) is the energy per nucleon in an asymmetric infinite matter, while
e(ρ, δ = 0, T ) is that one of symmetric nuclear matter. These quantities are
expressed by e = E(r, T )/ρ, where E(r, T ) is the total energy density of the
system. The Skyrme energy density functional (its part for infinite homogeneous
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nuclear matter) that we use in our work has the form:
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In Eq. (3) t0, t1, t2, t3, x0, x1, x2, x3, and α are the Skyrme parameters. We use
in this work the interactions SkM* [21] and SLy4 [22]. The nucleon effective
mass mq,k is defined through

m
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, (4)

with q = (n, p) referring to neutrons or protons. The dependence on temperature
of E(r, T ) [Eq. (3)] and m/mq,k(r) [Eq. (4)] comes from the T -dependence of
the densities and kinetic energy densities.

A self-consistent approach based on the simultaneous treatment of temperature-
dependent density distributions and kinetic energy density is related to the finite
temperature formalism for the HFB method. In it the nuclear Skyrme-HFB prob-
lem is solved by using the cylindrical transformed deformed harmonic-oscillator
basis [15]. The HFBTHO code based on the mentioned approach is used in our
numerical calculations.

There exist various methods to obtain the kinetic energy density τq(r, T )
entering the expression for E(r, T ) [Eq. (3)]. One of them is, as mentioned
above, to use the HFBTHO code. Another way is to use the TF approximation
adopted in Ref. [10], or an extension of the TF expression up to T 2 terms valid
for low temperatures [17]:

τq(r, T ) =
2m

~2
εKq =

3

5
(3π2)2/3

[
ρ5/3
q +

5π2m2
q

3~4

1

(3π2)4/3
ρ1/3
q T 2

]
. (5)

In Eq. (5) the first term in square brackets is the degenerate limit at zero tem-
perature and the T 2 term is the finite-temperature correction. We calculate the
local density and the kinetic energy density using the self-consistent Skyrme-
HFB method and the HFBTHO code. In addition, two other density distribu-
tions of 208Pb [23], namely the Fermi-type density determined within the ETF
method [18, 19] and the symmetrized-Fermi local density obtained within the
rigorous density functional approach (RDFA) [20], are used.
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In the present work we use the approach given by Eqs. (1) and (2), as well
as the T -dependent Skyrme EDF [Eq. (3)] to calculate the symmetry energy co-
efficient. Here we note the specific problem that arises, namely how to calculate
the term e(ρ, δ = 0, T ) of Eq. (2) that is responsible for the contribution of the
energy per particle of symmetric nuclear matter. Therefore, in our study aiming
to investigate the temperature dependence of esym within a given isotopic chain,
we introduced in [14] two other definitions of esym(A, T ) in LDA that, in our
opinion, would be more appropriate in this case. They concern namely the above
mentioned problem of calculating the term e(ρ, δ = 0, T ) of Eq. (2) for sym-
metric nuclear matter. First, on the basis of Eqs. (1) and (2) with e = E(r)/ρ,
we present the integrand of the right-hand side of the following expression for
I2esym(A, T ) as a difference of two terms with transparent physical meaning:

I2esym(A, T ) =

∫
d~r

[E(ρA(r), δ, T )

A
− E(ρA1(r), δ = 0, T )

A1

]
, (6)

in which the first one corresponds to the energy per volume and particle of nu-
clear matter E(ρA(r), δ, T )/A with a density ρA(r) equal to that of the con-
sidered nucleus with A nucleons, Z protons and N neutrons from the given
isotopic chain. The second term E(ρA1(r), δ = 0, T )/A1 is the analogous for
the isotope with mass number A1 = 2Z (with N1 neutrons and Z protons,
N1 = Z = A1/2). For example, for the Ni isotopic chain the nucleus A1 is
the double-closed shell nucleus 56Ni (Z = N1 = 28), while for the Sn isotopic
chain the nucleus A1 is the double-closed shell nucleus 100Sn (Z = N1 = 50)
and both 56Ni and 100Sn isotopes play a role of reference nuclei.

Our second new definition of esym(A, T ) using the LDA presents esym(A, T )
in the form:

I2esym(A, T ) =

∫
d~r

A
[E(ρA(r), δ, T )− E(ρĀ(r), N1, Z1, δ = 0, T )] , (7)

in which the mass number Ā = A [A(Z,N)] is the same, but with different
nucleon content, namely Ā(Z1 = Ā/2, N1 = Ā/2). This consideration requires
the even-even nucleus with N1 = Z1 = Ā/2 to be bound.

3 Results for Ni, Sn, and Pb Isotopic Chains and Discussion

Our analysis of the local density distributions ρ(r) and their changes with respect
to the temperature show that the densities decrease in the central part with the
increase of the temperature. At the same time, it is observed that the nuclear
surface becomes more diffuse with increasing T [14].

The results for the proton and neutron radii and their difference (neutron-
skin thickness) as a function of the temperature T for selected 124Sn, 132Sn, and
152Sn isotopes, are illustrated in Figure 1. The calculations are made by using
SLy4 parametrization. In the temperature range T=0–4 MeV considered in the
present work, we find a very slow increase of the proton radius compared to the
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Figure 1. Left: Proton Rp (solid line) and neutron Rn (dashed line) radius of 124Sn,
132Sn, and 152Sn isotopes with respect to the temperature T calculated with SLy4 inter-
action. Right: Neutron skin thickness ∆R for the same Sn isotopes as a function of T .

rapid increase of the neutron radius with the temperature. Here we would like to
note that the use of SkM* interaction leads to results for the proton and neutron
radii, as well as for the neutron skin thickness of the considered isotopes, very
similar to those obtained by using of SLy4 Skyrme force.

In understanding the symmetry energy coefficient esym for finite nuclear
systems and their thermal evolution, some ambiguities about their proper defi-
nition could be noted. First, we use the new definition of the symmetry energy
coefficient esym given by Eq. (6) and the results for several nuclei from the three
isotopic chains calculated with SkM* interaction are presented in Figure 2. They
are obtained by simultaneous consistent treatment of both T -dependent nucleon
densities and kinetic energy densities within the HFB method and computed by
the HFBTHO code. As already noted, there exist difficulties in the calculations
of the term e(ρ, δ = 0, T ) of Eq. (2) for symmetric nuclear matter, namely, of
using the reference case δ = 0 when the nucleus with Z = N1 is unbound.
Keeping this in mind, as an attempt, for Ni and Sn isotopes we take as reference
nuclei (A1) the nuclei 56Ni (Z = N1 = 28) and 100Sn (Z = N1 = 50), re-
spectively. The case of the Pb isotopic chain is even more difficult because the
eventual nucleus of reference with Z = N1 = 82 is clearly unbound and there
do not exist appropriate bound nuclei for the purpose. As a way to overcome
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Figure 2. Temperature dependence of the symmetry energy coefficient esym obtained
by using Eq. (6) for several nuclei from Ni (A=70–82) (a), Sn (A=124–140) (b), and Pb
(A=206–214) (c) isotopic chains with SkM* force. The nucleon densities and kinetic
energy densities used to calculate esym are consistently derived from HFBTHO code.

this difficulty, we try in this case to use again the 100Sn as a reference nucleus
with Z = N1 = 50, normalized with A1 = 100 in Eq. (6). The symmetry
energy coefficient exhibits almost flat behavior for the double-magic 78Ni and
132Sn nuclei.

As a next step of our work, we give in Figure 3 (top panel) the results for the
symmetry energy coefficient of five Ni isotopes obtained by using Eq. (7) and
SkM* force. The same difficulties noted above at the discussion of the results
presented in Figure 2 and obtained by using Eq. (6), appear in this case. We
limited ourselves to these cases because the even-even nucleus with N1 = Z1 =
Ā/2 (Ā = A) should be bound. This is possible only for Ni isotopes but not
for Sn and Pb ones. For instance, in the case of Sn isotopes all the N1 = Z1

nuclei with Ā (Ā = A) starting at 124 (N1 = Z1 = 62) are unbound. So, we

100



Temperature Dependence of the Symmetry Energy and Neutron Skins in ...

 0

 5

 10

 15

 20

 25

 0  1  2  3

Ni SkM*
e s

ym
 [M

eV
]

T [MeV]

64Ni
68Ni
72Ni
76Ni
80Ni

 14

 16

 18

 20

 22

 24

 0  1  2  3  4

208Pb

e s
ym

 [M
eV

]

T [MeV]

ETF
RDFA
HFBTHO SkM*
HFBTHO SLy4

Figure 3. (Top) Temperature dependence of the symmetry energy coefficient esym ob-
tained by using Eq. (7) for several nuclei from Ni (A=64–80) isotopic chain with SkM*
force. The nucleon densities and kinetic energy densities used to calculate esym are con-
sistently derived from HFBTHO code; (Bottom) Comparison of the results for the sym-
metry energy coefficient esym for 208Pb calculated with ETF, RDFA, and HFB (with
SkM* and SLy4 forces) densities. They are obtained by using Eqs. (1)-(4) and T 2-
approximation for the kinetic energy density [Eq. (5)].

consider the cases 64Ni: N1 = Z1 = 32 (64Ge), 68Ni: N1 = Z1 = 34 (68Se),
72Ni: N1 = Z1 = 36 (72Kr), 76Ni: N1 = Z1 = 38 (76Sr), 80Ni: N1 = Z1 = 40
(80Zr). In contrast to the results presented in Figure 2, the esym(A, T ) for the Ni
isotopes calculated using Eq. (7) and shown in Figure 3 do not decrease smoothly
and have a different behavior. The results obtained in both cases show a strong
dependence of the symmetry energy coefficient for finite nuclei on the proper
definition.

In the same Figure 3 (bottom panel) the results for 208Pb obtained using
Eqs. (1)-(5) with three different densities, namely those obtained within the ETF,
RDFA, and HFB (with SkM* and SLy4 forces) methods are presented. The ki-
netic energy densities are obtained within TF method with T 2 term [Eq. (5)].
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The results for the thermal evolution of the symmetry energy coefficient in the
interval T=0–4 MeV show that its values decrease with temperature being larger
in the case of symmetrized-Fermi density of 208Pb obtained within the RDFA.
As already discussed, the applications of different methods fail to give unique
values for the symmetry energies for finite nuclei or their temperature depen-
dence. Nevertheless, we would like to note that our results for esym are close
to the result obtained within the LDA (in the version reported in Ref. [10]) and
within the relativistic TF approximation in Ref. [24] for the same nucleus. The
differences in the results can be referred to the different calculation ingredients
(nucleon densities, kinetic energy density etc.) or the adopted procedure to ob-
tain the symmetry energy coefficient.

For completeness, we performed a comparative analysis of esym for several
isotopes from the same Ni, Sn, and Pb chains applying the LDA in the ver-
sion based on Eqs. (1)-(4) (see Figure 4). The symmetric nuclear matter part of
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Figure 4. The mass dependence of the symmetry energy coefficient esym for Ni (a), Sn
(b), and Pb (c) isotopic chains at temperatures T = 0 MeV (solid line), T = 2 MeV
(dash-dotted line), and T = 4 MeV (dashed line) calculated with SLy4 (blue lines) and
SkM* (green lines with points) Skyrme interactions. The results of esym are obtained by
using Eqs. (1)-(4) with HFBTHO densities and T 2-approximation for the kinetic energy
density [Eq. (5)].
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Eq. (2) e(ρ, δ = 0, T ) is obtained approximately with densities ρn = ρp = ρ/2,
where ρ is the total density calculated with the HFBTHO code. The kinetic
energy density is from the TF method with T 2 term [17] in Eq. (5) calculated
with the above densities. So, in this case τn ≈ τp. Our results show an exis-
tence of a kink in the values of esym(A) at zero temperature at the double-magic
78Ni and 132Sn nuclei as well as the lack of kinks in the Pb isotopic chain (see
Figure 4 and Ref. [14]). These results confirm our previous observations when
studying the density dependence of the symmetry energy for Ni, Sn, and Pb iso-
topes [7, 8]. We also note that in the cases of esym(A) for Ni and Sn isotopic
chains the kinks exist for T = 0 MeV, but not for T = 2 and T = 4 MeV. The
reason is the well-known fact that the shell effects can be expected up to T ≤ 2
MeV.

4 Conclusions

In this work (see also [14]), a theoretical approach has been used to study the
temperature dependence of the symmetry energy coefficient in finite nuclei and
other properties, such as the T -dependent nucleon densities and related rms
radii, as well as the possibility of formation of neutron skins. The approach
uses as a ground previous considerations within the local-density approximation
(e.g., Refs. [10–13]) combining it with the self-consistent Skyrme-HFB method
using the cylindrical transformed deformed harmonic-oscillator basis (HFBTHO
code) [15, 16]. For infinite nuclear matter a Skyrme energy density functional
with SkM* and SLy4 parametrizations is used. In our work we consider the
isotopic chains of neutron-rich Ni, Sn, and Pb isotopes that represent an inter-
est for future measurements with radioactive exotic beams. In addition to the
HFBTHO densities of these isotopes, two other temperature-dependent densi-
ties of 208Pb were used in the present paper: the local densities within the ETF
method [18,19] that reproduce the averaged THF results up to temperature T=4
MeV, and the symmetrized-Fermi local density distribution determined within
the RDFA [20]. We restrict ourselves to this temperature range 0–4 MeV be-
cause, in accordance with several findings (e.g., in Ref. [25]), the limiting tem-
perature (above which the nucleus cannot exist as a bound system) has been eval-
uated around 4 MeV for finite nuclei with mass number A ≥ 100. In general,
the density distributions decrease with the temperature in the center of the nu-
cleus. Following the trend of the corresponding proton and neutron rms radii, the
neutron-skin thickness grows significantly with the increase of T within a given
isotopic chain. Second, we find that at zero temperature a formation of a neutron
skin can be expected to start at A > 78 and A > 132 for Ni and Sn isotopes,
respectively, thus confirming our previously obtained results in Refs. [6, 7].

As an attempt to analyze in a more appropriate way the symmetry energy
coefficient esym(A, T ) of finite nuclei within a given chain, we introduce two
new definitions of this quantity within the LDA [Eqs. (6) and (7)]. In general, the
results of esym calculated for various isotopes in the present work are in good
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agreement with theoretical predictions for some specific nuclei reported by other
authors. At the same time, however, the difference between the results points out
the dependence of the calculations of esym(A, T ) on various definitions of this
quantity.

Studying the mass dependence of the symmetry energy coefficient, we note
also the existence of a kink in the Ni and Sn isotopic chains at the double-magic
78Ni and 132Sn nuclei at T = 0 MeV, respectively, and a lack of kinks in the Pb
chain. This observation confirms the result obtained previously in our works [7,
8] when studying the nuclear symmetry energy of spherical neutron-rich nuclei,
particularly its isotopic evolution.
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